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In this paper, we investigate Cramer’s rule for the general solution to the system of quater- 

nion matrix equations 

A 1 XB 1 = C 1 , A 2 XB 2 = C 2 , 

and Cramer’s rule for the general solution to the generalized Sylvester quaternion matrix 

equation 

AXB + CY D = E, 

respectively. As applications, we derive the determinantal expressions for the Hermitian 

solutions to some quaternion matrix equations. The findings of this paper extend some 

known results in the literature. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Throughout, we denote the real number field by R , the set of all m × n matrices over the quaternion algebra 

H = { a 0 + a 1 i + a 2 j + a 3 k | i 2 = j 2 = k 2 = i jk = −1 , a 0 , a 1 , a 2 , a 3 ∈ R } 
by H 

m ×n , the identity matrix with the appropriate size by I . The symbols R r ( A ) , N r ( A ) , R l ( A ) and N l ( A ) stand for the 

right column space, the right null space, the left row space and the left null space of a matrix A ∈ H 

m ×n , respectively. The 

Moore–Penrose inverse of A ∈ H 

m ×n , denoted by A † , is the unique matrix X satisfying the Penrose equations 

AX A = A, X AX = X, (AX ) ∗ = AX, (X A ) ∗ = X A. 

L A and R A stand for the two projectors L A = I − A 

† A,R A = I − AA 

† induced by A . 

Research on the system of matrix equations {
A 1 X B 1 = C 1 
A 2 X B 2 = C 2 
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has been actively ongoing for many years. For instance, Navarra [1] derived a necessary and sufficient condition for the 

existence of a common solution to the pair of linear matrix equations. Mitra [2] and [3] provided the necessary and sufficient 

conditions for the existence and a representation of the general solution of (1.1) . Peng et al. [4] considered an efficient 

algorithm for the least-squares reflexive solution of (1.1) . Some other results relate to the consistent conditions as well as 

the expressions of the general solution of (1.1) can be founded in [5] and [6] . Meanwhile, many studies have also been done 

on the solution to the generalized Sylvester equation 

AX B + CY D = E. (1.2) 

In 1987, Chu [7] studied the compatibility and the least norm solution of (1.2) by using the general singular value decom- 

position (GSVD). In 1998, Xu and Zheng [8] derived the least square solution and the symmetric (anti-symmetric) solution 

of AXA 

∗ + C Y C ∗ = F by using the canonical correlation decomposition (CCD). In 2006, Liao et al. [9] studied the least square 

solution of (1.2) with the least norm by combining CCD and GSVD. Some other results can be found in [10–19] . It follows 

from the above results that there are some special relationships between the consistence of (1.1) and (1.2) : the generalized 

Sylvester equation (1.2) is consistent if and only if {
R C AX B = R C E 
AX BL D = EL D 

is consistent with respect to X . By this special relationship, Wang [20] derived the necessary and sufficient conditions for 

the existence and expressions of the general solution to (1.1) and (1.2) over arbitrary regular rings with identity, respectively. 

Cramer’s rule is often used as a basic method to express the unique solution to some consistent matrix equations or 

the best approximate solution to some inconsistent matrix equations. In 1970, Steve Robinson [21] gave an elegant proof 

of Cramer’s rule over the complex number field. After that, many authors [22–29] studied the generalized inverses and 

solutions of some restricted equations by Cramer’s rules. However, we can not generalize the existing Cramer’s rules to the 

quaternion skew field directly, since the multiplication of quaternions is not commutative and there are some differences 

between the determinants of quaternion matrix and complex matrix. In 2008, Kyrchei [30] defined the row and column 

determinants of a square matrix over the quaternion skew field. Moreover, he proved Cramer’s rules for the unique solution, 

the minimum norm least square solution of some quaternion matrix within the framework of the theory of the row and 

column determinants in [31–37] , respectively. In addition, we [38–41] derived Cramer’s rule for the unique solution of some 

restricted quaternion matrix equations. To our best knowledge, there has been little research on expressing the general 

solution of (1.1) and (1.2) by Cramer’s rules. 

Motivated by the work mentioned above, and keep the interesting of Cramer’s rules theory, we in this paper aim to con- 

sider Cramer’s rules for the general solution to the system (1.1) and the generalized Sylvester Eq. (1.2) over the quaternion 

skew field, respectively. The paper is organized as follows. In Section 2 , we derive some condensed Cramer’s rules for the 

general solution of (1.1) . As applications, we derive Cramer’s rules for the Hermitian solutions to some quaternion matrix 

equations. In Section 3 , we derive some Cramer’s rules for the general solution of (1.2) . In Section 4 , we show a numerical 

example to illustrate the main results. To conclude this paper, we propose some further research topics in Section 5 . 

2. Cramer’s rule for the general solution of (1.1) 

Unlike multiplication of real or complex numbers, multiplication of quaternions is not commutative. Many authors 

[42–46] had tried to give the definitions of the determinants of a quaternion matrix. Unfortunately, by their definitions 

it is impossible for us to give a determinantal representation of an inverse of matrix. In 2008, Kyrchei [30] defined the row 

and column determinants of a square matrix over the quaternion skew field as follows. Suppose S n is the symmetric group 

on the set I n = { 1 , . . . , n } . 
Definition 2.1 (Definition 2.4–2.5 [30] ) . (1) The i th row determinant of A = 

(
a i j 

)
∈ H 

n ×n is defined by 

rdet i A = 

∑ 

σ∈ S n 
( −1 ) 

n −r a ii k 1 
a i k 1 i k 1+1 

. . . a i k 1 + l 1 i 
. . . a i k r i k r +1 

. . . a i k r + l r i k r 

for all i = 1 , . . . , n. The elements of the permutation σ are indices of each monomial. The left-ordered cycle notation of the 

permutation σ is written as follows: 

σ = 

(
ii k 1 i k 1 +1 . . . i k 1 + l 1 

)(
i k 2 i k 2 +1 . . . i k 2 + l 2 

)
. . . 

(
i k r i k r +1 . . . i k r + l r 

)
. 

The index i opens the first cycle from the left and other cycles satisfy the following conditions, i k 2 < i k 3 < . . . < i k r and 

i k t < i k t + s for all t = 2 , . . . , r and s = 1 , . . . , l t . (2) The j th column determinant of A = 

(
a i j 

)
∈ H 

n ×n is defined by 

cdet j A = 

∑ 

τ∈ S n 
( −1 ) 

n −r a j k r j k r + l r . . . a j k r +1 j k r 
. . . a j j k 1 + l 1 

. . . a j k 1 +1 j k 1 
a j k 1 j 

for all j = 1 , . . . , n. The elements of the permutation τ are indices of each monomial. The right-ordered cycle notation of 

the permutation τ is written as follows: 

τ = 

(
j k r + l r . . . j k r +1 j k r 

)(
j k 2 + l 2 . . . j k 2 +1 j k 2 

)
. . . 

(
j k 1 + l 1 . . . j k 1 +1 j k 1 j 

)
. 
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