
Applied Mathematics and Computation 335 (2018) 237–247 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

A boundary value problem arising from nonlinear 

viscoelasticity: Mathematical analysis and numerical 

simulations 

R. Cipolatti a , ∗, I.-S. Liu 

a , L.A. Palermo 

b , M.A. Rincon 

a , R.M.S. Rosa 

a 

a Instituto de Matemática, Universidade Federal do Rio de Janeiro, Brazil 
b CENPES, Petrobras, Rio de Janeiro, Brazil 

a r t i c l e i n f o 

MSC: 

35J25 

35J57 

35Q86 

74B15 

74D10 

74G15 

74L05 

Keywords: 

Viscoelastic 

Relative Lagrangian formulation 

Existence and uniqueness 

Numerical simulation 

a b s t r a c t 

The large deformations of solid structures are necessarily described by nonlinear consti- 

tutive equations and its effective calculation leads to nonlinear boundary value problems. 

In this article we apply the successive linear approximation method by considering the 

relative Lagrangian formulation to describe the deformations of a nearly incompressible 

viscoelastic material. We prove the existence, uniqueness and regularity of weak solutions 

for the boundary value problem associated with each step of the method and we perform 

numerical simulations for the problem of borehole closing in well drilling. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

In the study of deformations of geological structures, it is crucial to consider more realistic constitutive equations for the 

materials under analysis, which are in general described by nonlinear laws. This is the situation, for instance, in the study of 

salt dynamics, put in evidence by the oil and gas industry, since the large deformations and the enormous internal tensions 

deserve special attention. 

Concerning the geological phenomena of interest for the petroleum exploration, we can mention, among others, the 

following ones, which are related to sediment-salt migration, such as the formation of salt diapirs, multiple salt domes and 

borehole closing, involving very large deformation and creep motions, typical behavior of viscoelastic material bodies. These 

problems have been widely studied in petroleum industry, where most results for salt tectonics are modeled by regarding 

the bodies as viscous fluids [11] instead of solid bodies to avoid the numerical difficulties due to large deformation and 

nonlinearity. A critical situation is the one related to borehole closing, which deserves special attention in the engineering 

processes. 

In this paper we consider a compressible isotropic viscoelastic body B whose constitutive law for the stress tensor T is 

given by 

T = F (F , ˙ F ) := −pI + s 1 B + s 2 B 

−1 + 2 μ1 D + μ2 (DB + BD ) + μ3 (DB 

−1 + B 

−1 D ) , (1.1) 
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which is proposed in [10] to describe the salt migration, and which exhibit the main characteristics of salt diapirism. Fol- 

lowing standard notation, p is the pressure, I denotes the three-dimensional identity tensor, F is the deformation gradient 

tensor, B = F F T is the left Cauchy–Green tensor, D is the symmetric part of the velocity gradient L = 

˙ F F 
−1 

, i.e., 

D := 

1 

2 

(L + L T ) = 

1 

2 

(∇v + (∇v ) T 
)

(1.2) 

and s 1 , s 2 , μ1 , μ2 , μ3 are material parameters. 

If κ denotes a reference configuration of the body B, the equation of motion at time τ can be written in the Lagrangian 

formulation as 

ρκ (X ) ̈x (τ, X ) − Div T κ (τ, X ) = ρκ (X ) g(τ, X ) , X ∈ κ(B) , (1.3) 

where Div denotes de divergent with respect to the space variable X , x = χ(τ, X ) is the deformation, ρκ is the density, T κ
is the associated Piola–Kirchhoff stress tensor at time τ relative to the reference configuration κ and g is the body forces. 

Since linearization is physically inadmissible for large deformations, any initial-boundary value problem with (1.3) in- 

volves necessarily nonlinear systems of partial differential equations. In order to circumvent the difficulty due to the non- 

linearities, we propose an algorithm to solve numerically these boundary value problems based on successive linear approx- 

imations (SLA), by considering the relative Lagrangian formulation . Roughly speaking, it can be regarded as a kind of “time 

discretization of the Eulerian formulation”, where the constitutive equations are calculated at each state, regarded as the 

reference configuration for the next state. So, by considering sufficiently small time intervals, we can linearize the constitu- 

tive functions and solve the corresponding linear boundary value problem between each state. This procedure is similar to 

the theory of small deformation superposed on finite deformations (see [8] ). 

Using this algorithm, we have implemented numerical simulations for elastic Mooney–Rivlin materials in particular cases 

where the exact solutions are known, as in pure shear [9] and in bending of rectangular block into a circular one [8] . The 

comparison of the numerical results with the known exact solutions of these two examples has confirmed the efficiency of 

the method in the simulation of large deformations (see also [10] for the simulation of salt diapirism where this approach 

has also been applied). 

The main purpose of the present work is the mathematical analysis of the elliptic boundary value problem coming from 

the linearization and discretization of (1.3) for a nearly incompressible material in the quasi-static regime, which is effec- 

tively solved in numerical simulations. 

We organize this paper as follows: in Section 2 we present a brief description of the successive linear approximation 

method based on the relative Lagrangian formulation. In Section 3 we introduce a family of (linear) boundary problem is- 

sued from (1.1) , each one corresponding to the problem to be solved numerically in each step of the relative Lagrangian 

formulation. The mathematical analysis of these linear problems is presented in Section 4 and finely, some numerical sim- 

ulations are reported in Section 5 . 

2. Relative Lagrangian formulation and successive linear approximation 

Let κ0 be a fixed reference configuration of a material body B at time t 0 and κ t be its deformed configuration at the 

present time t . It is well known that a certain quantity β related to the motion of B can be described in Lagrangian formu- 

lation or in Eulerian formulation. In the first case β must be described by a function with domain R × κ0 (B ) , while in the 

last case, β must be defined on { t} × κt (B) . In the relative Lagrangian formulation, we regard the magnitude β as a function 

with domain R × κt (B) . 

To be more precise, let x = χ(t, X ) , X ∈ κ0 (B) , be the deformation of κ0 (B) to κt (B) and, for some time τ > t , denote κτ

the configuration of B at time τ . Then, for x = χ(t, X ) , we write 

χt (τ, x ) := χ(τ, X ) . (2.1) 

The function χt : R × κt (B) → R 

3 defined by (2.1) is the relative deformation at time τ with respect to the present time 

t . 

If F (t, X ) = ∇ X χ(t, X ) denotes the deformation gradient, we also consider 

F t (τ, x ) := ∇ x χt (τ, x ) , 

which is the relative deformation gradient . Hence, one may check by applying formally the chain rule that 

F t (τ, x ) = F (τ, X ) F (t, X ) −1 . 

With these notations, we define the relative displacement u t by 

u t (τ, x ) := χ(τ, x ) − x, ∀ x ∈ κt (B) 

and the relative displacement gradient at time τ as 

H t (τ, x ) := ∇ x u t (τ, x ) = F t (τ, x ) − I = F (τ, X ) F (t, X ) −1 − I. (2.2) 

These definitions lead to the following relations: 

F t (τ, x ) = I + H t (τ, x ) and F (τ, X ) = 

(
I + H t (τ, x ) 

)
F (t, X ) . (2.3) 
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