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a b s t r a c t 

Based on the idea of Fourier extension, we develop a new method for numerical differen- 

tiation. The Tikhonov regularization method with a super-order penalty term is presented 

to deal with the illposdness of the problem and the regularization parameter can be cho- 

sen by a discrepancy principle. For various smooth conditions, the solution process of the 

new method is uniform and order optimal error bounds can be obtained. Numerical ex- 

periments are also presented to illustrate the effectiveness of the proposed method. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Numerical differentiation is an interesting topic in the field of numerical analysis. It arises in a lot of mathematical 

models and engineering problems, for instance, solutions related to some Volterra equation [1] ; in the processes of image 

processing [2,3] and identification [4] ; some inverse problems arising from financial mathematics [5,6] , etc. The main diffi- 

culty of numerical differentiation is that it is an ill posed problem, i.e., arbitrarily small error in the input data may cause 

huge errors in its approximate derivatives. In the past years, a wide range of computational methods has been reported to 

treat the numerical differentiation problem [7–20] . According to the type of regularization techniques, these methods can 

be classified into difference methods, mollification methods, truncation method and Tikhonov methods. 

In [20] , a truncated Fourier series method has been proposed for numerical differentiation. This method is effective for 

calculating arbitrary derivatives of periodic functions. The theoretical analysis shows that the smoother the original function, 

the higher the convergence rate of its approximate derivatives. Moreover, the truncated parameter is uniform for the differ- 

ent order derivatives and convergence rates are self-adaptive. However, the situation changes completely when function is 

nonperiodic. The reason lies in the well-known Gibbs phenomenon, rapidly convergent of Fourier series is available only for 

periodic functions. 

Recently, Fourier extension method has attracted more and more attention of researcher [21–26] . It has been proved 

successfully to ameliorate the Gibbs phenomenon. For a function f ∈ H 

p (−1 , 1) , the idea of the Fourier extension is to 

extend the function f to a function g that is periodic on a interval [ −T , T ] with T > 1. (In this paper, we focus on T = 2 . ) 

In Fig. 1 the function f (x ) = exp (x ) , a periodic Fourier extension obtained by the method of [23] , has been shown. For 

numerical differentiation, our aim is to obtain approximation derivatives of f from its perturbed data f δ satisfying 

‖ f − f δ‖ L 2 (−1 , 1) ≤ δ, (1) 
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Fig. 1. The function f (x ) = exp (x ) (solid) on the interval [ −1 , 1] and its periodic extension approximation (dashed–dotted) on the interval [ −2 , 2]. 

where δ > 0 is a given constant called the error level. First, we construct an approximation function f by using Fourier 

extension method and f (k ) will be used as the approximation of f ( k ) . Different from the SVD (Singular Value Decomposition) 

method which is used in previous literatures, we present a modified Tikhonov regularization method to obtain a stable 

Fourier extension and a new penalty term will be used in the modified method. From the theories results of regularization 

in Hilbert scales [27] , if we use ‖ D 

q f ‖ 2 ( D is one order differential operator) as the penalty term in Tikhonov functional, then 

we can obtain ‖ D 

k (f − f ) ‖ = O (δ
p−k 

p ) whether q ≥ p (high order regularization) or p /2 < q < p (low order regularization). But 

when p is large, above theoretical result is difficult to attain in practice subject to the limitation of floating point precision. In 

this paper, we use ‖ ∑ ∞ 

l=0 
D l 

l! 
f ‖ 2 as the penalty term (named it supper order regularization) and the theoretical result shows 

that ‖ D 

k (f − f ) ‖ = O (δ
p−k 

p ) holds for any p ∈ R when we choose the regularization parameter by a discrepancy principle. 

The structure of the paper is as follows. In Section 2 , we present the mathematical formulation of the Fourier extension 

by using Tikhonov method with supper order regularization. The choice of the regularization parameter and corresponding 

convergence results are shown in Section 3 . Section 4 provides a variety of numerical results to demonstrate the effective- 

ness of our method. 

2. Formulation of problem and solution 

We first introduce some notation. Let �1 = (−1 , 1) , �2 = (−2 , 2) . For any v = (c 0 , c 1 , s 1 , . . . , c n , s n , . . . ) 
T ∈ l 2 , we define 

the operator 

(Fv )(x ) = 

c 0 
2 

+ 

∞ ∑ 

l=1 

(
c l cos 

π

2 

lx + s l sin 

π

2 

lx 

)
. (2) 

and 

Dv = 

(
0 , 

π

2 

c 1 , 
π

2 

s 1 , . . . 
nπ

2 

c n , 
nπ

2 

s n , . . . 

)T 

, 

R v = 

( 

∞ ∑ 

k =0 

D 

k 

k ! 

) 

v = (c 0 , e 
π
2 c 1 , e 

π
2 s 1 , . . . e 

nπ
2 c n , e 

nπ
2 s n , . . . ) 

T , (3) 

P N v = ( c 0 , c 1 , s 1 , . . . c N , s N , 0 , 0 , . . . ) 
T 
. 

Remark 1. For any f ∈ H 

k ( �2 ), if the vector v f satisfy (Fv )(x ) = f (x ) . Then it can be derived that 

‖ D 

k f‖ L 2 (�2 ) = ‖D 

k v f ‖ l 2 . (4) 

Now we define the following cost functional: 

�(v ) = ‖Fv − f δ‖ 

2 
L 2 (−1 , 1) + α ‖R v ‖ 

2 
l 2 , (5) 

where α is a regularization parameter. Now if let v δα is the minimizer of the functional �, then f δ := f δα = Fv δα will be chosen 

as the approximate function of f . It is well known that v δα can be obtained by solving the following equation [28] : (
F 

∗F + αR 

2 
)
v = F 

∗ f δ. (6) 
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