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In this study, we consider the minimum-norm least squares solution of the generalized 

coupled Sylvester-conjugate matrix equations by conjugate gradient least squares algo- 

rithm. When the system is consistent, the exact solution can be obtained. When the sys- 

tem is inconsistent, the least squares solution can be obtained within finite iterative steps 

in the absence of round-off error for any initial matrices. Furthermore, we can get the 

minimum-norm least squares solution by choosing special types of initial matrices. Finally, 

some numerical examples are given to demonstrate the algorithm considered is quite ef- 

fective in actual computation. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

In this paper, we consider the following generalized coupled Sylvester-conjugate matrix equations: {
A 1 X + B 1 Y = D 1 X E 1 + F 1 , 

A 2 Y + B 2 X = D 2 Y E 2 + F 2 . 
(1.1) 

where A 1 , A 2 , B 1 , B 2 , D 1 , D 2 ∈ C 

p × m , E 1 , E 2 ∈ C 

n × n , F 1 , F 2 ∈ C 

p × n are given constant matrices, while X , Y ∈ C 

m × n are matrices 

to be determined. Matrix equations are often encountered in many areas of computational mathematics [1–3,5,11,12,14,50] , 

such as control and system theory [4,7,8] , stability theory and some fields of pure and applied mathematics [6,9,10,13,15,52] . 

Owing to their important applications, matrix equations have attracted considerable attention from many researchers 

[16–24] . When the system (1.1) is consistent, by using the Kronecker product, we can transform the system (1.1) into the 

linear equations Ax = b. According to the properties of the linear equations, we can also obtain the necessary and sufficient 

conditions for existence and uniqueness of solution for the system (1.1) . However, in order to solve the equivalent forms, 

the inversion of the associated large matrix need be involved, which leads to computational difficulty because excessive 

computer memory is required. With the increase of the sizes of the related matrices, the iterative methods have replaced 

the direct methods and become the main strategy for solving the matrix equations [45–49,51] . Based on the iterative 

solutions of matrix equations, Ding and Chen presented the hierarchical gradient iterative algorithms for general matrix 

equations [25,26] and hierarchical least squares iterative algorithms for generalized coupled Sylvester matrix equations and 

general coupled matrix equations [27,28] . An iterative algorithm for solving the coupled matrix equations AY B = E, CY D = F 

over generalized centro-symmetric matrices was proposed [29] . By using the hierarchical identification principle and the 

gradient iterative method of the simple matrix equations, the gradient-based iterative algorithms were established for 
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AXB + CY D = F , AXB + CX T D = F [30,31] and for the coupled matrix equations A 1 XB 1 = F 1 and A 2 XB 2 = F 2 , this method was 

extend to solving some more complicated matrix equations [32–36] . In recent years, Dehghan and Hajarian considered the 

generalized coupled Sylvester matrix equations AXB + CXD = M, EXF + GY H = N [37] and presented a modified conjugate 

gradient method to solve the generalized coupled Sylvester matrix equations over the generalized bisymmetric matrix pair 

( X , Y ). Hajarian considered extending the CGLS algorithm for least squares solutions of the generalized Sylvester-transpose 

matrix equations [48] . Xie and Ma proposed a modified conjugate gradient method to solve the reflexive or anti-reflexive 

solutions of the following problem [38] : {
AX B + CY T D = S 1 , 

EX 

T F + GY H = S 2 . 
(1.2) 

They proved the solutions can be obtained within finite iterative steps in the absence of round-off error for any initial 

given reflexive or anti-reflexive matrices as the system (1.1) is consistent. However, as the system (1.1) is inconsistent, how 

to obtain the least squares solution and the minimum-norm least squares solution is still open. Other structured matrix 

equations have been proposed for the problem in which the coefficient matrices are complex matrices. Dehghani-Madiseh 

and Dehghan [39] studied generalized solution sets of the interval generalized Sylvester matrix equation 

p ∑ 

i =1 

A i X i + 

q ∑ 

j=1 

Y j B j = C (1.3) 

and some approaches for inner and outer estimations. Wu et al. [42] considered the solutions to the following problem 

p ∑ 

η=1 

A iηX ηB iη + C iηX ηD iη = F i , i = 1 , 2 , . . . , N, (1.4) 

where N is a positive integer. 

It is known that the conjugate gradient method is the most popular iterative method for solving the system of linear 

equations 

Ax = b, (1.5) 

where x ∈ R 

n is an unknown vector, A ∈ R 

m × n is a given constant matrix, and b ∈ R 

m is a given vector. By the definition of 

the Kronecker product, matrix equations can be transformed into system (1.5) , then the conjugate gradient method can be 

applied to various linear matrix equations [37,41] . Based on this idea and improved by the aforementioned matrix equation, 

in this paper, we use the conjugate gradient least squares method to solve the solution of the system (1.1) , as the system is 

inconsistent and verify that least squares solution can be obtained within finite iterative steps in the absence of round-off

error for any initial matrices. Furthermore, we show that the minimum-norm least squares solution ( X 

∗, Y ∗) can be obtained 

by choosing special types of initial matrices. Finally, we give some numerical examples to illustrate the behavior of the 

algorithm considered. 

Problem 1. Given A 1 , A 2 , B 1 , B 2 , D 1 , D 2 ∈ C 

p × m , E 1 , E 2 ∈ C 

n × n , F 1 , F 2 ∈ C 

p × n , find the matrices X ∈ C 

m × n and Y ∈ C 

m × n such 

that ∥∥∥∥(
A 1 X + B 1 Y − D 1 X E 1 − F 1 
A 2 Y + B 2 X − D 2 Y E 2 − F 2 

)∥∥∥∥ = min . (1.6) 

Problem 2. Let S E denote the set of solution pair of Problem 1 . For given matrices ( ̃  X , ̃  Y ) , find ( ̂  X , ̂  Y ) ∈ S E such that 

‖ ̂

 X − ˜ X ‖ 

2 + ‖ ̂

 Y − ˜ Y ‖ 

2 = min 

(‖ X − ˜ X ‖ 

2 + ‖ Y − ˜ Y ‖ 

2 
)
. (1.7) 

The remainder of this paper is organized as follows. In Section 2 , we propose a conjugate gradient least squares 

algorithm for the system (1.1) and give some properties. When the system is inconsistent, the least squares solution can be 

obtained within finite iterative steps in the absence of round-off error for any initial matrices. Furthermore, we prove that 

the minimum-norm least squares solution can be obtained by choosing special types of the initial matrices in Section 3 . 

In Section 4 , some numerical examples are given to demonstrate the algorithm considered is quite effective in actual 

computation. Finally, we give our conclusions in Section 5 . 

2. Conjugate gradient least squares method 

2.1. Preliminaries 

The following notations, definitions and lemmas will be used to develop the proposed work. We use A 

T , R (A ) and tr( A ) 

to denote the transpose, the column space and the trace of a matrix A , respectively. We denote the set of all m × n real 

matrices, the set of all m × n complex matrices by R 

m × n , C 

m × n , respectively. For any matrices A , B ∈ R 

m × n , A � B is their 

Kronecker product. For matrices A , B and X with appropriate dimension, we can easily obtain the following result: 

vec [ AX B ] = (B 

T 
� A ) vec [ X ] . 
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