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a b s t r a c t 

We present an amelioration of current known algorithms for minimizing functions de- 

pending on the eigenvalues corresponding to a partition of a given domain. The idea is 

to use the advantage of a representation using density functions on a fixed grid while 

decreasing the computational time. This is done by restricting the computation to neigh- 

bourhoods of regions where the associated densities are above a certain threshold. The al- 

gorithm extends and improves known methods in the plane and on surfaces in dimension 

3. It also makes possible to make computations of optimal volumic 3D spectral partitions 

on sufficiently important discretizations. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Many works were dedicated recently to the theoretical and numerical study of optimal spectral partitions in the plane 

and on surfaces in R 

3 . A typical example is the minimization of the sum of the fundamental eigenvalues of the Dirichlet–

Laplace operator corresponding to cells of a partition of a given domain: 

min 

(ω i ) ∈P(D ) 
λ1 (ω 1 ) + · · · + λ1 (ω n ) , (1) 

where P(D ) denotes the family of partitions into a fixed number n of cells of a domain D , belonging to R 

2 , R 

3 or to a 

surface in R 

3 . We recall that the eigenvalues of the Dirichlet–Laplace operator are obtained by solving the partial differential 

equation −�u = λ(ω) u in ω with boundary condition u = 0 on ∂ω. It is known that problem (1) has a solution and the cells 

ω i of the optimal partition are C 1, α-regular outside singular parts of co-dimension greater than 1. 

The study of spectral optimal partitioning problem (1) has multiple motivations. They are a useful tool in the proof of 

monotonicity formulas concerning the behaviour of solutions of PDEs on domains which are adjacent, as can be seen in 

[1,23] . Moreover, problem (1) appears as a limiting case in the study of chemical reactions [18] or in the study of systems of 

competing systems [22] . The existence of solutions for problem (1) was proved in [4] and the C 1, α regularity and qualitative 

properties concerning the boundaries of the cells were proved in [21,23] . The interest in numerical studies concerning prob- 

lem (1) is motivated by the lack of an exact theoretical description even in the simplest cases, for small number of cells. A 

summary of known results for nodal and spectral partitions together with a more detailed list of references can be found in 

[11] . 

One question which remains open is the study of the spectral honeycomb problem regarding the partition of the plane 

which asymptotically minimizes the sum of the first eigenvalues of the Dirichlet–Laplacian of each cell. This is equivalent 

to studying solutions of problem (1) when n → ∞ . It was conjectured in [21] that the honeycomb partition is the best one. 

Big steps towards the proof of this conjecture were made in [9] , where the authors prove that the spectral honeycomb 
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conjecture is true among convex sets under the hypothesis that Polya’s conjecture holds for hexagons and a slightly weaker 

version holds for pentagons and heptagons. We recall that Polya’s conjecture states that among n -gons of fixed area, the 

regular one minimizes the first Dirichlet eigenvalue. Recent numerical simulations which confirm Polya’s conjecture can be 

found in [13 , Chapter 1]. 

The numerical aspects of the spectral partitioning problem (1) were approached by Bourdin et al. [6] . They proposed an 

algorithm which benefited of the fact that the cells could be represented as density functions on the same grid. This allows a 

straightforward implementation of a gradient based optimization method for the search of optimal numerical configurations. 

They managed to study partitions of up to 512 cells and they noticed that locally partitions seem to be composed of patches 

of regular hexagons. Due to the size of the computations the 512 cell computations was done at Texas Advanced Computing 

Center. Below we propose a modification of this algorithm which does not have any loss of precision and which decreases 

in a significant way the cost of the computation. The case of 512 cells can now be run in a reasonable amount of time on 

a personal computer. Some simulations for more than 10 0 0 cells on finer discretizations are possible and some of these are 

presented in the following. 

We recall the following works dealing with numerical computations regarding spectral optimal partitions. In [18,19] the 

authors present a problem issued from the modelization of chemical reactions for which the stationary state energy is 

the sum of the Dirichlet–Laplace eigenvalues of the cells. They present evidence that the optimal configurations approach 

the hexagonal one in the for large number of components. In [36] , Osting et al. investigate graph partitions using spectral 

methods. They propose a different optimization method which is gradient free and converges to a local minimum in a finite 

number of iterations. In [25] , the authors investigate partitions minimizing the sum of the Laplace–Beltrami eigenvalues on 

different surfaces in R 

3 . A different approach is presented in [14] in the case of the sphere using fundamental solutions to 

compute the eigenvalues. An adaptation of the algorithm in [6] is presented in [17] in the case of the multiphase problem 

where the objective functional is the sum of the fundamental eigenvalues and an area penalization. In [15] , a method for 

minimizing the sum of the eigenvalues and the maximal eigenvalue is proposed. In [5] , the authors study the minimization 

of the largest eigenvalue by minimizing some p -norms of eigenvalues for large p . They propose a grid restriction procedure 

in the plane with the purpose of obtaining better precision. This consisted in finding rectangular neighbourhoods of the 

cells on which we restrict the computations. This article proposes further improvements of this procedure by considering 

even fewer points in the computational region. The grid restriction procedure reduces greatly the computational cost, which 

allows the study of partitions into a large number of cells with low computational resources. The reduction in computational 

complexity also allows the study of partitions on surfaces and even volumic partitions for domains in R 

3 . 

A similar approach was devised in [7] for the study of partitions with many cells which minimize the total perimeter. 

It is another example where the representation of the sets as density functions helps when dealing with partitions, which 

is made possible with the use of the Modica–Mortola approximations of the perimeter by �-convergence. For details see 

[8,35] . 

This paper focuses on describing how the methods presented in [6] can be modified so that we gain in precision and in 

computational speed. We underline the speed improvements which are obtained and we propose a number of simulations 

that can be made with this method. The method described in this article allows us to work in 3D with over one hundred 

cells on grids of size 100 × 100 × 100. The 3D problem has also been approached in [40] for a periodic cube with a res- 

olution of 26 × 26 × 26 and up to at most three cells. In [20] , the authors apply the same algorithm as in [18] to the 3D 

case. Recently, in [38] the authors use a diffusion generated algorithm to study optimal partitions in the periodic cube for 

dimension 2,3 and even 4. They also present computations regarding partitions of the sphere. The computations in [38] and 

[20] use an energy formulation using the diffusion equation in order to study the evolution of the partition. In [38] , the use 

of the Fast Fourier Transform and Spherical Harmonic Transform allow to accelerate computations. 

The paper is organized as follows. In Section 2 , we describe the numerical algorithm for computing the eigenvalue corre- 

sponding to each cell. We also describe how to solve the eigenvalue problem on a subset of the discrete grid, which allows a 

great reduction in computational costs. In Section 3 , we present various numerical computations showing the computational 

advantages of our algorithm, both in being able to efficiently solve cases where we have many cells and in solving more 

complex cases, like finding optimal spectral partitions of domains in R 

3 . Using this algorithm we manage to give some infor- 

mation about the possible spectral honeycomb conjecture in R 

3 . Analysing a few configurations which arise when working 

on the cube with periodic boundary conditions we note that the partition into rhombic dodecahedra seems to give the 

lowest sum of normalized eigenvalues. 

2. Numerical algorithm 

When considering the spectral optimal partitioning problem (1) from a numerical point of view two issues arise: first 

we need to be able to model the partition condition and secondly we need to be able to compute accurately enough ap- 

proximations of the fundamental eigenvalues for each of the cells of the partition. In [6] , both these issues were approached 

by replacing the cells ω i by density functions ϕi with domain D and values in [0,1]. This immediately gives an algebraic 

formulation of the partition constraint, namely the sum of the functions ϕi must be identically equal to 1. The computation 

of the eigenvalues associated to each of the cells was made using a relaxed eigenvalue problem on the fixed domain D . The 

main contribution of this article is describing how the penalized eigenvalue problem can be solved in a more efficient way, 

by reducing the size of the computational domain around each cell. 
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