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a b s t r a c t 

In this paper, we first present a modified Chambolle–Pock primal-dual method (MCP- 

PDM) to solve a convex composite optimization problem which minimizes the sum of 

two convex functions with one composed by a linear operator. It is well known that the 

Chambolle–Pock primal-dual method (CPPDM) with the combination parameter being 1 

is an application of the proximal point algorithm and thus is convergent, however, when 

the combination parameter is not 1, the method may be not convergent. To choose flex- 

ibly the combination parameter, we develop a slightly modified version with little addi- 

tional computation cost. In CPPDM, one variable is updated twice but another variable 

is updated only once at each iteration. However, in the modified version, two variables 

are respectively updated twice at each iteration. Another main task of this paper is that 

we reformulate some well-known sparse recovery problems as special cases of the convex 

composite optimization problem and then apply MCPPDM to address these sparse recovery 

problems. A large number of numerical experiments have demonstrated that the efficiency 

of the proposed method is generally comparable or superior to that of existing well-known 

methods such as the linearized alternating direction method of multipliers and the graph 

projection splitting algorithm in terms of solution quality and run time. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

In this paper, we consider the convex composite optimization problem 

minimize f (x ) + g(Ax ) , (1) 

where f : X → R ∪ { + ∞} and g : Y → R ∪ { + ∞} are proper, lower semicontinuous, convex functions defined respectively 

on finite-dimensional Hilbert spaces X and Y with the corresponding inner product 〈·, ·〉 and the norm ‖ · ‖ = 

√ 〈·, ·〉 , 
A : X → Y is a linear operator with the adjoint A 

∗ and the induced norm ‖ A ‖ . The input variable x can be a vector, matrix, 

or an element from a composite Hilbert space. By introducing an auxiliary variable y ∈ Y, we can rewrite the problem 

(1) as the form 

minimize f (x ) + g(y ) (2) 
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subject to y = Ax. (2) 

Parikh and Boyd in [1] first called the problem form (2) graph form since the variables x and y are constrained to lie in 

the graph { (x, y ) ∈ X × Y : y = Ax } of the linear operator A . The problem (1) or graph form (2) includes many popular 

convex optimization problems such as linear and quadratic programming, general cone programming [3] , and captures 

a wide variety of specific applications such as the lasso problem, logistic regression, support vector machine in statistics 

and machine learning [4] , basis pursuit problem in signal processing [12] , total-variation minimization problems in image 

processing [29] , radiation treatment planning [5] and portfolio optimization [6] , and so on. We invite the reader to consult 

[1,2] for more applications. In this paper, we will focus on three classes of more attractive sparse recovery problems. 

Compressive sensing. The fundamental problem in compressive sensing [8–11] is to recover a high-dimensional sparse or 

approximately signal x̄ ∈ R 

n from very few nonadaptive linear and noisy measurements b ∈ R 

m , that is, 

b = � x̄ + e, 

where � ∈ R 

m ×n (m 
 n ) is a sensing matrix and e ∈ R 

m is a noise vector. The theory of compressive sensing has indicated 

that one can recover accurately and efficiently the original sparse signal via solving the quadratically constrained Basis 

Pursuit (BP ε) problem 

minimize ‖ x ‖ 1 

subject to ‖ �x − b‖ 2 ≤ ε, (3) 

where ε is an estimated upper bound of the noise level. In the noiseless case ( e = 0 ), we can set ε = 0 and then obtain the 

well-known Basis Pursuit (BP) problem [12] 

minimize ‖ x ‖ 1 

subject to b = �x. (4) 

Another more theoretically effective estimator for recovering sparse signals from noisy measurements is the Dantzig 

selector (DS) introduced in [13] , which is the solution to the convex problem 

minimize ‖ x ‖ 1 

subject to ‖ ̃

 D 

−1 �T (�x − b) ‖ ∞ 

≤ γ , (5) 

where γ is a scalar related to the noise level, || · || ∞ 

is the � ∞ 

norm and 

˜ D is the diagonal matrix whose diagonal entries 

are the � 2 norms of the columns of � . 

Low-rank matrix completion. Some applications such as the well-known Netflix problem [14] , collaborative filtering [16] , 

system identification [15,18] , global positioning [17] , can be expressed as a low-rank matrix completion problem consisting 

of recovering an unknown low-rank matrix M ∈ R 

m ×n from a give subset � of observed entries. The problem can be solved 

via the convex optimization 

minimize ‖ X ‖ ∗
subject to X i j = M i j , ∀ (i, j) ∈ �, (6) 

where ‖ · ‖ ∗ is the nuclear norm of a matrix. By introducing the projection operator P � : R 

m ×n → R 

m ×n defined as 

[ P �X ] i j = 

{
X i j , if (i, j) ∈ �, 

0 , if (i, j) 
∈ �, 

and the resulting matrix M � = P �M, we can reformulate the problem (6) as 

minimize ‖ X ‖ ∗
subject to P �X = M �. (7) 

Robust principal component analysis. Compared to classical PCA capturing the low-rank structure of the data matrix 

corrupted by random gaussian noises, robust principal component analysis (RPCA) introduced by Candès et al. in [19] aims 

to capture low-rank structure of the data matrix including sparse gross errors. In [19] , the authors have claimed that RPCA 

can be cast as the following convex optimization 

minimize ‖ L ‖ ∗ + ν‖ S‖ 1 

subject to D = L + S, (8) 

where ‖ S‖ 1 = 

∑ 

i, j | (S) i j | , D ∈ R 

m ×n is a data matrix and the parameter ν > 0 is used to balance the weights of rank and 

sparsity. 

Due to wide applicability of the problem (1) in different scientific research fields, it is very key to develop fast and 

efficient algorithms for solving (1) . Many different algorithms have been designed for (1) based on properties of f and g or 

the composite function g ◦A . Specifically, we distinguish three cases for these algorithms. In the first case where the function 

f is differentiable with a Lipschitz continuous gradient and the composite function g ◦A has inexpensive proximity operator, 

the proximal forward-backward algorithm [20] and its fast version based on Nesterov’s acceleration technique [21] are most 
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