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a b s t r a c t 

In this paper we investigate the dynamical properties of a two prey-one predator system 

with quadratic self interaction represented by a three-dimensional system of differential 

equations by using tools of computer algebra. We first investigate the stability of the sin- 

gular points. We show that the trajectories of the solutions approach to stable singular 

points under given conditions by numerical simulation. Then, we determine the condi- 

tions for the existence of the invariant algebraic surfaces of the system and we give the 

invariant algebraic surfaces to study the flow on the algebraic invariants which is a useful 

approach to check if Hopf bifurcation exists. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

The stability of the ecological systems and the persistence of populations of the species within them are most important 

concerns of mathematical physics as well as ecology. One of the most important ecological models is the predator-prey 

model. The dynamic relationship between the predator and its prey has been for a long time one of the main themes in 

ecology due to its universal existence and importance [1] . Dynamical analysis of spatial predator-prey models where the 

species interact not only with the ones living in the same spatial location but also interact with the ones living in spatially 

adjacent locations have gained much attention [2–4] . Dynamical complexity of predator-prey models with time delay have 

also been extensively studied [5–8] . Reflecting these concerns, mathematical models of ecological systems have been used 

to investigate the stability of a variety of generalizations of the Lotka–Volterra model (see for instance, [9–12] ) which is 

known as one of the first dynamical systems to represent the predator-prey interaction as proposed by Lotka [13] and 

Volterra [14] . They are among the first to study this phenomena by making a number of assumptions that led to this 

nontrivial but tractable mathematical problem where x and y denote the population densities of the prey and the predator 

evolving with time t . The Lotka–Volterra model is given as 

dx 

dt 
= x (a − by ) , 

dy 

dt 
= y (cx − d) , 
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where a is the natural growth rate of the prey population in the absence of predation, b is the death rate per encounter 

of the prey due to predation, c is the efficiency of turning consumed prey into predator and d is the natural death rate of 

the predator in the absence of food. The Lotka–Volterra model has been generalized to more advanced systems in order to 

represent more realistic models which possess stable singular points. The model has been mentioned with the fact that it 

does not contain quadratic self interaction terms. The quadratic self interaction terms serve the purpose of modeling how 

prey-A interacts with other prey-A and prey-B interacts with other prey-B. The underlying idea for deploying quadratic self 

interaction terms only in prey equations is that if x = u 2 , y = v 2 and z = w 

2 , then there are interaction couplings such as 

u v 2 and u 2 v and v w 

2 and v 2 w in the prey and predator equations [15] . Self interaction terms denote competition within 

species and therefore is shown by negative terms in the prey equations. In this paper we enhance this idea of employing 

quadratic self interaction terms in the prey equations to three-dimensional systems. 

Two prey-one predator system with quadratic self interaction in the prey equations where one predator species interacts 

with two teams of prey species is considered in this work. If the population densities of prey-A and prey-B are denoted by 

x and z , respectively and the population density of the predator is denoted by y , then the two prey-one predator system 

with quadratic self interaction is given by 

dx 

dt 
= x (a 1 − b 1 x − c 1 y ) , 

dy 

dt 
= y (−a 2 + b 2 x + c 2 z) , 

dz 

d t 
= z(a 3 − b 3 y − c 3 z) , (1) 

where a 1 and a 3 are growth rates of prey-A and prey-B in the absence of the predator, a 2 is the death rate of the predator 

in the absence of the preys, c 1 and b 3 are the death rates of prey-A and prey-B due to predation, b 2 and c 2 are the 

consumption rates of the predator over prey-A and prey-B and b 1 and c 3 are quadratic self interaction rates of prey-A and 

prey-B. All parameters and variables are assumed to be nonnegative values in order to have physical explanations. System 

(1) was proposed in [16] where the goal of work was monitoring the corresponding species in a class of predator-prey 

systems in order to analyze the population dynamics. In this work a nonlinear auxiliary system (so called the observer 

system) is designed to reconstruct the unknown states or unmeasurables theoretically by employing high order polynomials. 

Although the method of the observer is powerful, there is an estimation error. Therefore, it is necessary to study the system 

by using qualitative methods. In this paper, we present our results on the system by using the methods of stability and 

algebraic invariants to understand the behavior of the system in detail. 

One of the major tasks of the dynamical systems theory is to analyze the qualitative properties of a dynamical system 

which is defined by ODEs. Indeed, one might try to solve this problem by using numerical simulations but using them gives 

information only on a particular solution and not on the qualitative behavior of the dynamical system. However, the most 

useful aspect of dynamical systems theory is that one can predict some features of the phase portrait of a system governed 

by ODEs without actually solving the system. The simplest examples of such information are the number and the positions 

of singular points. Also the stability of a singular point can be detected without solving the system by local stability analysis. 

A more advanced method to understand the qualitative behavior of a dynamical system consists of finding the invariant 

algebraic surfaces. This powerful algebraic approach helps us to find points where Hopf bifurcation can occur when local 

methods fail to give results. It is also very useful to find algebraic first integrals [17,18] . For these reasons, the method 

has been applied to many important problems of mathematical physics such as the Lorenz system [19–23] and various 

generalizations of the Lotka–Volterra model [24,25] . 

In this paper we first perform a local stability analysis of system (1) , i.e. we find the singular points and study their sta- 

bility in Section 2 . In Section 3 we describe an approach to find the invariant algebraic surfaces of the polynomial systems of 

ODEs and use it to find all such surfaces of degree one and two of system (1) in order to understand qualitative properties 

of the system. Then, in Section 4 we perform a study of the flow on the invariant plane of a subfamily of system (1) . 

2. The stability of the singular points 

In this section we give results on the positions and the stability of the singular points of nonlinear system (1) . Before 

giving results on stability of the singular points, we give the following information on the invariant set of system (1) . 

System (1) has two first integrals 

I 1 = 1 + x + 

c 1 
b 1 + b 2 

y − c 3 
b 1 

z 

and 

I 2 = x −b 1 b 3 c 2 + b 2 b 3 c 3 y b 1 (b 3 + c 1 ) c 3 z c 1 (b 1 c 2 −b 2 c 3 ) . 

System (1) has the invariant set { 

(x, y, z) | 1 + x + 

c 1 
b 1 + b 2 

y − c 3 
b 1 

z = h 

} 
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