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a b s t r a c t 

We consider the initial boundary value problem of the time fractional nonlinear Sine–

Gordon equation and the fractional derivative is described in Caputo sense with the or- 

der α(1 < α < 2). Two fully discrete schemes are developed based on Legendre spectral 

approximation in space and finite difference discretization in time for smooth solutions 

and non-smooth solutions, respectively. Numerical stability and convergence are analysed. 

Numerical experiments for both the fully discrete schemes are presented to confirm our 

theoretical analysis. 

© 2018 Published by Elsevier Inc. 

1. Introduction 

Fractional differential equations (FDEs) have been found more realistic in modelling a variety of physical phenomena, 

engineering process, biological system and financial products, such as anomalous diffusion and non-exponential relaxation 

patterns [1] . Typically, such scenarios involve long-range temporal cumulative memory effects and/or long-range spatial 

interactions that can be more accurately described by fractional-order models [2–5] . 

Much attention has been gained in FDEs, finding numerical methods to solve FDEs especially for the fractional calculus 

has been popular in the twenty-first century, such as finite difference/finite element methods [6–15] , spectral method 

or spectral collocation method [16–21] , variational iteration method [22,23] , spline collocation method [24] , and other 

numerical methods [25–27] . 

In this paper, we consider time fractional Sine–Gordon equation 

C 
0 D 

α
t u − ∂ 2 x u + sin u = f (x, t) , x ∈ (−1 , 1) , 0 < t ≤ T , (1.1) 

subject to the initial condition 

u (x, 0) = g 0 (x ) , u t (x, 0) = g 1 (x ) x ∈ [ −1 , 1] , (1.2) 
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and boundary condition 

u (−1 , t) = 0 , u (1 , t) = 0 , 0 < t ≤ T , (1.3) 

where α is a parameter describing the fractional order of the time derivative in the Caputo sense and 1 < α < 2, when α = 2 , 

(1.1) reduces to the classical Sine–Gordon equation. g 0 , g 1 are given functions. The Caputo definition with fractional-order 

derivative 1 < α < 2 is defined as 

C 
0 D 

α
t u (x, t) = 

1 

�(2 − α) 

∫ t 

0 

∂ 2 u ( x, s ) 

∂s 2 
d s 

( t − s ) α−1 
. 

The Caputo fractional derivative is considered here because it allows traditional initial and boundary conditions to be 

included in the formulation of the problem. 

Sine–Gordon equation is a very important nonlinear hyperbolic equation and used widely in many fields of physics 

including applications in the chain of coupled pendulums and modelling the propagation of transverse electromagnetic 

wave on a superconductor transmission system. For fractional Sine–Gordon equation the authors of [28] showed that 

the dynamics on the 1D lattice can be equivalently presented by the corresponding fractional nonlinear equation in the 

long-wave limit and they concentrated on the conditions of such equivalence, type of the equations with fractional deriva- 

tives and some related properties. As examples of their developments, fractional Sine–Gordon and wave-Hilbert nonlinear 

equations have been found for classical lattice dynamics. 

Sine–Gordon equation has been studied by many researchers using different numerical methods, for example, integer 

Sine–Gordon equation has been solved by variational iteration method [29] , spectral method [30] , space fractional Sine–

Gordon equation has been solved by compact difference scheme [31] , time fractional Sine–Gordon equation by implicit RBF 

meshless approach [32] . We use Legendre spectral method for solving time fractional Sine–Gordon equation due to the 

high accuracy of spectral method, and we get the temporal convergence order is 3 − α, this result is better than [32] which 

the convergence rate in time is first order. Since the analytical solutions to the FDEs are not smooth in most cases, such as 

the solutions in time to the FDEs are like t σ , where σ is not an integer. Then we give a fully discrete scheme for solving 

non-smooth solutions, we follow Lubich’s correction approach by adding the correction terms, for more details see [33,34] , 

the numerical results show better performance compared to the fully discrete scheme we give. 

An outline of this paper is as follows. We commence by reviewing some preliminaries and notations and recall the result 

of Legendre projection approximation in Section 2 . In Section 3 , we give the time discretization and build a linear fully 

discrete Legendre spectral scheme. We prove the unconditionally stability and convergence in Section 4 , respectively. In 

Section 5 , we present numerical experiments to confirm the effectiveness of our scheme and numerical results also confirm 

the fully discrete scheme we give for non-smooth solutions. In Section 6 , some numerical examples are given. Finally, we 

make a conclusion. 

2. Preliminaries 

Denote � = (−1 , 1) . Let L 2 ( �), L ∞ ( �), and H 

m ( �) be the usual Sobolev spaces equipped with norms ‖ · ‖ , ‖ · ‖ ∞ 

and 

‖ · ‖ m 

. The inner product of L 2 ( �) and H 

m ( �) are denoted by ( ·, ·) and ( ·, ·) m 

. | · | m 

denotes the semi-norm of H 

m ( �). 

Furthermore, 

H 

1 
0 (�) = { v ∈ H 

1 (�) | v (±1) = 0 } . 
We denote by L ∞ (0, T ; H 

m ( �)) the space of the measurable functions u : [0, T ] → H 

m ( �), such that 

‖ u ‖ L ∞ (H m ) = ess sup 

0 ≤t≤T 

‖ u (t) ‖ m 

< ∞ . 

Denote C k ([0, T ]; H 

m ( �))(0 ≤ k < ∞ ) the space of k − times continuous differentiable functions v : [0 , T ] → H 

m (�) , such 

that 

‖ u ‖ C k (H m ) = 

k ∑ 

i =0 

max 
0 ≤t≤T 

‖ v (i ) (t) ‖ m 

< ∞ . 

Throughout this paper c is a generic positive constant independent of N . 

Let N be a positive integer. We denote by P N ( �) be the space of all polynomials of degree less than or equal to N . 

P 0 
N 

:= { u ∈ P N | u (±1) = 0 } . Now we recall some projection approximation results. 

Let π1 , 0 
N 

be the H 

1 
0 
− orthogonal projection operator from H 

1 
0 
(�) into P 0 

N 
, such that for all u ∈ H 

1 
0 
(�) , 

(∂ x π
1 , 0 
N 

u, ∂ x v ) = (∂ x u, ∂ x v ) , v ∈ P 0 N . 

For the projection operator π1 , 0 
N 

, one has the following approximation result: 

Lemma 2.1 [35] . For all u ∈ H 

1 
0 (�) ∩ H 

min { N,m } (�) , we have 

‖ u − π1 , 0 
N 

u ‖ k ≤ cN 

k −m ‖ u ‖ m 

, k = 0 , 1 , m ≥ 1 , 
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