FISEVIER

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Some properties of comaximal right ideal graph of a ring[∞]

Shouqiang Shen, Weijun Liu, Lihua Feng*

School of Mathematics and Statistics, Central South University New Campus, Changsha, Hunan 410083, PR China

ARTICLE INFO

MSC: 05C25 16N40 16D25

Keywords: Comaximal right ideal graph Central idempotent Local ring

ABSTRACT

For a ring R (not necessarily commutative) with identity, the comaximal right ideal graph of R, denoted by $\mathcal{G}(R)$, is a graph whose vertices are the nonzero proper right ideals of R, and two distinct vertices I and J are adjacent if and only if I+J=R. In this paper we consider a subgraph $\mathcal{G}^*(R)$ of $\mathcal{G}(R)$ induced by $V(\mathcal{G}(R)) \setminus \mathcal{J}(R)$, where $\mathcal{J}(R)$ is the set of all proper right ideals contained in the Jacobson radical of R. We prove that if R contains a nontrivial central idempotent, then $\mathcal{G}^*(R)$ is a star graph if and only if R is isomorphic to the direct product of two local rings, and one of these two rings has unique maximal right ideal $\{0\}$. In addition, we also show that R has at least two maximal right ideals if and only if $\mathcal{G}^*(R)$ is connected and its diameter is at most 3, then completely characterize the diameter of this graph.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper, R is assumed to be a ring (not necessarily commutative) with identity. Let U(R) be the set of all units of R, $\mathbb{I}(R)$ be the set of all proper right ideals of R, $Max_r(R)$ be the set of all maximal right ideals of R. If $|Max_r(R)| = 1$, then R is called a *local ring*. The *Jacobson radical J(R)* of a ring R is defined to be the intersection of all the maximal right ideals of R. If $J(R) = \{0\}$, then R is said to be *semisimple*. A ring R is called *nil-semisimple* if it has no nilpotent ideals different from $\{0\}$. We denote $\mathcal{J}(R) = \{I \mid I \text{ is a right ideal of } R, \text{ and } I \subseteq J(R)\}$.

We review some notions related to this paper. For a graph G, we use V(G) and E(G) to denote the vertex set and the edge set, respectively. The *degree* of a vertex v in G, denoted by $d_G(v)$, is the number of edges of G incident with v. G is said to be *connected* if for any two distinct vertices u and v in G there exists a path from u to v, and G is *totally disconnected* if $E(G) = \emptyset$. The *distance* d(u, v) between two vertices u and v in G is the length of a shortest (u, v)-path in G (if there is no path connecting u and v, we define $d(u, v) = \infty$). The *diameter* of G, denoted by diam(G), is equal to

$$\sup\{d(u,v)|u,v\in V(G)\}.$$

The girth of G, denoted by g(G), is the length of the shortest cycle in G. If G has no cycles, then $g(G) = \infty$. G is called a *tree* if G is connected and has no cycles. A k-partite graph is one whose vertex set can be partitioned into k subsets so that no edge has both ends in any one subset. A *complete* k-partite graph is one in which each vertex is joined to every vertex that is not in the same subset. The *complete bipartite* (i.e., 2-partite) graph with part sizes m and n is denoted by $K_{m,n}$. Moreover, if m = 1 or n = 1, then this graph is said to be a *star graph*. A *complete* graph is one in which each pair of distinct vertices

E-mail addresses: shenshouqiang@126.com (S. Shen), wjliu6210@126.com (W. Liu), fenglh@163.com (L. Feng).

^{*} This research was supported by NSFC (No. 11671402), Hunan Provincial Natural Science Foundation (2016][2138, 2018][2479), the Fundamental Research Funds for the Central Universities of CSU (2017zzts057) and Mathematics and Interdisciplinary Sciences Project of CSU.

^{*} Corresponding author.

is joined by an edge, we use K_n to denote the complete graph with n vertices. A subset S of V(G) is called a *clique* if the subgraph induced by S is complete.

Using the properties of graphs to study algebraic structures becomes an exciting topic in the last decades. In particular, using graph theory to study a ring attracts much attention. Let R be a commutative ring with identity. Sharma and Bhatwadekar [18] defined the comaximal graph $\Gamma(R)$, with vertices as elements of R, where two distinct vertices a and b are adjacent if and only if Ra + Rb = R. Then they obtained a computational formula for the chromatic number of this graph. Maimani et al. [16] investigated the connectedness and the diameter of the graph $\Gamma_2(R) - J(R)$, where $\Gamma_2(R)$ is the subgraph of $\Gamma(R)$ induced by non-unit elements. Wang [21] characterized those rings R for which $\Gamma_2(R) - J(R)$ is a forest or Eulerian, and he also characterized all the finite rings R such that the genus of $\Gamma_2(R)$ (resp. $\Gamma(R)$) is at most one. Samei [17] studied the girth and dominating number of $\Gamma_2(R) - J(R)$, and obtained the algebraic and topological characterizations for graphical properties of this graph. In addition, several researchers [1,20] generalized the results from [16,21] to the non-commutative rings.

Recently, Ye and Wu [23] defined another natural graph over a commutative ring R with identity, namely, the co-maximal ideal graph, denoted by C(R), is a graph whose vertices are the proper ideals of R which are not contained in the Jacobson radical J(R) of R, and two vertices I_1 and I_2 are adjacent if and only if $I_1 + I_2 = R$. They proved that C(R) is a connected graph with diameter at most 3, and they also studied the clique number and chromatic number of C(R). Akbari et al. [2] showed that there exists a vertex of C(R) that adjacent to all other vertices if and only if R is isomorphic to the direct product of a local ring and a field. Ye et al. [22] used the graph blow-up method to present a complete classification of rings R whose graphs C(R) are non-empty planar graphs. For other related works on co-maximal ideal graphs of commutative rings, one may refer to [4,7].

In addition, Amini et al. [3] extended the above concept to a non-commutative ring R with identity. They defined a new graph on R with vertices as the nonzero proper right ideals of R, and two distinct vertices I and J are adjacent if and only if I+J=R. This graph is called the *comaximal right ideal graph* of non-commutative ring R, denoted by $\mathcal{G}(R)$. They characterized the rings R for which $\mathcal{G}(R)$ respectively is connected, complete, planar, complemented or a forest.

In the present paper, we consider the subgraph $\mathcal{G}^*(R)$ of $\mathcal{G}(R)$ induced by $V(\mathcal{G}(R)) \setminus \mathcal{J}(R)$. In Section 2, we show that $\mathcal{G}^*(R)$ is a complete bipartite graph if and only if the cardinal number of the set $Max_r(R)$ is equal 2. Also we prove that if R contains a nontrivial central idempotent, then $\mathcal{G}^*(R)$ is a star graph if and only if $R \cong R_1 \times R_2$, where each R_i is local and one of R_i has unique maximal right ideal {0}. In Section 3, we show that $|Max_r(R)| \ge 2$ if and only if $\mathcal{G}^*(R)$ is connected and $diam(\mathcal{G}^*(R)) \le 3$. Moreover, we also completely characterize the diameter of this graph.

2. Properties of $\mathcal{G}^*(R)$

In this section, we present some properties of the comaximal right ideal graph $\mathcal{G}^*(R)$. These results show that the graph $\mathcal{G}^*(R)$ has many properties similar to those of the comaximal graph $\Gamma_2(R) - J(R)$ in [16].

Proposition 2.1. Let I be any nonzero proper right ideal of a ring R. Then $I \in \mathcal{J}(R)$ if and only if $\deg_{\mathcal{G}(R)}(I) = 0$.

Proof. Let $deg_{\mathcal{G}(R)}(I) = 0$ and assume that $I \notin \mathcal{J}(R)$. Then there exists $M \in Max_r(R)$ such that $I \nsubseteq M$. Therefore I + M = R. This contradicts our assumption.

Conversely, suppose that $deg_{\mathcal{G}(R)}(I) \neq 0$. Then there exists $J \in V(\mathcal{G}(R))$ such that I+J=R. On the other hand, for the proper right ideal J of R, there exists $N \in Max_r(R)$ such that $J \subseteq N$. From $I \subseteq J(R) \subseteq N$, we conclude that $I+J \subseteq N \neq R$, which is a contradiction. \square

According to Proposition 2.1, we know that each $I \in \mathcal{J}(R)$ is an isolated vertex of the graph $\mathcal{G}(R)$. Thus the main part of $\mathcal{G}(R)$ is the subgraph $\mathcal{G}^*(R)$. Based on this reason the main aim of this paper is to study the properties of $\mathcal{G}^*(R)$.

Theorem 2.2. Let R be a semisimple right Artinian ring which is not simple. Then the following are equivalent:

- (1) $G^*(R)$ is a finite graph.
- (2) R has only finitely many right ideals.
- (3) Every vertex of $\mathcal{G}^*(R)$ has finite degree.

Moreover, $G^*(R)$ has n vertices if and only if R has only n nonzero proper right ideals.

Proof

- (1) \Rightarrow (2) Let $\mathcal{G}^*(R)$ is a finite graph with n vertices. Since R is semisimple, every nonzero proper right ideal of R is a vertex of $\mathcal{G}^*(R)$. This leads to $|\mathbb{I}(R)\setminus\{0\}|=n$. Thus R has only finitely many right ideals.
- $(2) \Rightarrow (3)$ It is clear.
- (3) \Rightarrow (1) By the Wedderburn–Artin Theorem [24, p.562], we have $R \cong M_{n_1}(\Delta_1) \times M_{n_2}(\Delta_2) \times \cdots \times M_{n_r}(\Delta_r)$, where each $M_{n_i}(\Delta_i)$ is a matrix ring over division ring Δ_i . Since R is not simple, r > 1. Now we show that $M_{n_i}(\Delta_i)$ contains finitely many right ideals for $i = 1, 2, \ldots, r$. If $\{I_j\}_{j=1}^{\infty}$ is an infinite family of right ideals of $M_{n_1}(\Delta_1)$, for every $j \ge 1$, then the vertex $J = M_{n_1}(\Delta_1) \times \{0\} \times \cdots \times \{0\}$ of $\mathcal{G}^*(R)$ is adjacent to $I_j \times M_{n_2}(\Delta_2) \times \cdots \times M_{n_r}(\Delta_r)$. So the degree of J is not finite, this contradicts our assumption. By a similar argument, $M_{n_i}(\Delta_i)$ has finitely many right ideals for $i = 2, 3, \ldots, r$. This implies that R has finitely many right ideals. Furthermore, $\mathcal{G}^*(R)$ is a finite graph. \square

Download English Version:

https://daneshyari.com/en/article/8900873

Download Persian Version:

https://daneshyari.com/article/8900873

<u>Daneshyari.com</u>