Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Fault tolerance of locally twisted cubes

Litao Guo^{a,*}, Guifu Su^b, Wenshui Lin^c, Jinsong Chen^d

^a School of Applied Mathematics, Xiamen University of Technology, Xiamen 361024, China
^b School of Science, Beijing University of Chemical Technology, Beijing 100029, China
^c School of Information Science and Engineering, Xiamen University, Xiamen 361005, China
^d College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China

ARTICLE INFO

Keywords: Interconnection networks Fault tolerance k-component connectivity Conditional connectivity

ABSTRACT

Let G = (V, E) be a connected graph and P be graph-theoretic property. A network is often modeled by a graph G = (V, E). One fundamental consideration in the design of networks is reliability. The connectivity is an important parameter to measure the fault tolerance and reliability of network. The conditional connectivity $\lambda(G, P)$ or $\kappa(G, P)$ is the minimum cardinality of a set of edges or vertices, if it exists, whose deletion disconnects G and each remaining component has property P. Let F be a vertex set or edge set of G and P be the property of with at least k components. Then we have the k-component connectivity $c\kappa_k(G)$ and the k-component edge connectivity $c\lambda_k(G)$. In this paper, we determine the kcomponent (edge) connectivity of locally twisted cubes LTQ_n for small k, and we also prove other properties of LTQ_n .

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

A network is often modeled by a graph G = (V, E) with the vertices representing nodes such as processors or stations, and the edges representing links between the nodes. One fundamental consideration in the design of networks is reliability [2,8]. Let G = (V, E) be a connected graph, $N_G(v)$ the neighbors of a vertex v in G (simply N(v)), E(v) the edges incident to v. Moreover, for $S \subset V$, G[S] is the subgraph induced by S, $N_G(S) = \bigcup_{v \in S} N(v) - S$, $N_G[S] = N_G(S) \cup S$, and G - S denotes the subgraph of G induced by the vertex set of $V \setminus S$. If $u, v \in V$, d(u, v) denotes the length of a shortest (u, v)-path. For $X, Y \subset V$, denote by [X, Y] the set of edges of G with one end in X and the other in Y. A connected graph G is called super- κ (resp. super- λ) if every minimum vertex cut (edge cut) of G is the set of neighbors of some vertex in G, that is, every minimum vertex cut (edge cut) isolates a vertex. If G is super- κ or super- λ , then $\kappa(G) = \delta(G)$ or $\lambda(G) = \delta(G)$. For graph-theoretical terminology and notation not defined here we follow [1]. All graphs considered in this paper are simple, finite and undirected.

A *k*-component cut of *G* is a set of vertices whose deletion results in a graph with at least *k* components. The *k*-component connectivity $c\kappa_k(G)$ of *G* is the size of the smallest *k*-component cut. The *k*-component edge connectivity $c\lambda_k(G)$ can be defined correspondingly. We can see that $c\kappa_{k+1}(G) \ge c\kappa_k(G)$ for each positive integer *k*. The connectivity $\kappa(G)$ is the 2-component connectivity $c\kappa_2(G)$. The *k*-component (edge) connectivity was introduced in [3] and [11] independently. Fábrega and Fiol introduced extraconnectivity in [4]. Let $F \subseteq V$ be a vertex set, *F* is called extra-cut, if G - F is not connected

* Corresponding author. E-mail address: ltguo2012@126.com (L. Guo).

https://doi.org/10.1016/j.amc.2018.03.107

0096-3003/© 2018 Elsevier Inc. All rights reserved.

and each component of G - F has more than k vertices. The extraconnectivity $\kappa_k(G)$ is the cardinality of the minimum extra-cuts. Let + be the modulo 2 addition.

Definition 1. The locally twisted cube LTQ_n with 2^n vertices was introduced by Yang et al. [14]. It can be defined inductively as follows: LTQ_2 is a 4-cycle with vertex set {00, 01, 10, 11} and edge set {(00,01), (01, 11), (11,10),(10,00)}. For n > 2, LTQ_n contains LTQ_{n-1}^0 and LTQ_{n-1}^1 joined according to the following rule: the vertex $u = 0u_{n-2} \cdots u_0$ from LTQ_{n-1}^0 and the vertex $v = 1v_{n-2} \cdots v_0$ from LTQ_{n-1}^1 are adjacent if and only if $v = 1v_{n-2} \cdots v_0 = 1(u_{n-2} + u_0)u_{n-3} \cdots u_0$, u_i , $v_i \in \{0, 1\}$.

From the definition, we can see that each vertex of LTQ_n with a leading 0 bit has exactly one neighbor with a leading 1 and vice versa. It is a *n*-regular graph. In fact, LTQ_n can be obtained by adding a perfect matching *M* between LTQ_{n-1}^0 and LTQ_{n-1}^1 . Hence LTQ_n can be viewed as $G(LTQ_{n-1}^0, LTQ_{n-1}^1, M)$ or $LTQ_{n-1}^0 \odot LTQ_{n-1}^1$ briefly. For any vertex $u \in V(LTQ_n)$, $e_M(u)$ is the edge incident to *u* in *M*.

The locally twisted cube is an attractive alternative to hypercubes Q_n . The diameter of LTQ_n is approximately half that of Q_n . For more references, we can see [5,9,10,12–15]. In [7], Hsu et al. determined the *k*-component connectivity of the hypercube Q_n for k = 2, 3, ..., n + 1. In [16], Zhao et al. determined the *k*-component connectivity of the hypercube Q_n for k = n + 2, n + 3, ..., 2n - 4. In [6], Guo determined the *k*-component (edge) connectivity of the hypercube Q_n and the folded hypercube FQ_n for small *k*. In this paper, we obtain that:

- (1) $c\kappa_2(LTQ_n) = \kappa(LTQ_n) = n(n \ge 2).$
- (2) $c\kappa_3(LTQ_n) = 2n 2(n \ge 2)$.
- (3) $c\kappa_4(LTQ_n) = 3n 4(n \ge 4).$
- (4) $c\lambda_2(LTQ_n) = \lambda(LTQ_n) = n$ for $n \ge 2$.
- (5) $c\lambda_3(LTQ_n) = 2n-1$ for $n \ge 2$.
- (6) $c\lambda_4(LTQ_n) = 3n 2$ for $n \ge 2$.

2. Component connectivity of locally twisted cubes

We can see that the locally twisted cube LTQ_n has important properties as follows.

Lemma 2.1. Any two vertices of LTQ_n have at most two common neighbors for $n \ge 2$ if they have.

Proof. By induction. If n = 2, then the result holds. We assume that it is true for n < k. Suppose n = k and any $u, v \in V(LTQ_n)$ such that u, v have at most two common neighbors.

If $u, v \in V(LTQ_{n-1})$, then the two common neighbors are in $V(LTQ_{n-1})$ according to inductive hypothesis. And there is not a relation between the common neighbors of u, v and the perfect matching M added to LTQ_n . Hence u, v have at most two common neighbors in LTQ_n .

By symmetry, we assume that $u \in V(LTQ_{n-1}^0)$, $v \in V(LTQ_{n-1}^1)$. The common neighbors must be obtained by adding the perfect matching *M*. Note that every vertex of LTQ_{n-1}^0 has only one neighbor in LTQ_{n-1}^1 and vice versa. Then we obtain the result. \Box

Corollary 2.2. For any two vertices $x, y \in V(LTQ_n)(n \ge 2)$,

- (1) if d(x, y) = 2, then they have at most two common neighbors;
- (2) if $d(x, y) \neq 2$, then they do not have common neighbors.

Corollary 2.3. The girth of LTQ_n is $4(n \ge 2)$.

According to the definition of LTQ_n , if any two vertices of $V(LTQ_n)$ have only one common neighbor, then it is obtained by interchanging a pair of edges of the hypercube. Hence similar to Lemma 2.1, we have

Lemma 2.4. Let x and y be any two vertices of $V(LTQ_n)(n \ge 4)$ such that have only two common neighbors.

(1) If $x \in V(LTQ_{n-1}^0)$, $y \in V(LTQ_{n-1}^1)$, then the one common neighbor is in LTQ_{n-1}^0 , and the other one is in LTQ_{n-1}^1 .

(2) If $x, y \in V(LTQ_{n-1}^0)$ or $V(LTQ_{n-1}^1)$, then the two common neighbors are in LTQ_{n-1}^0 or LTQ_{n-1}^1 .

Lemma 2.5 [14]. $\kappa(LTQ_n) = \lambda(LTQ_n) = n(n \ge 2).$

Theorem 2.6. LTQ_n is super- λ for $n \ge 3$.

Proof. By induction. It is true for $n \le 4$. Let $n \ge 5$. Assume that it holds for n < k. We will show that it is true for n = k. Let $F \subseteq E(LTQ_n)$, |F| = n and $LTQ_n - F$ be not connected. Furthermore, $LTQ_n - F$ has only two connected components. With-

out loss of generality, suppose $|F \cap E(LTQ_{n-1}^0)| \le \lfloor n/2 \rfloor$. Then $LTQ_{n-1}^0 - F$ is connected.

Note that $|[LTQ_{n-1}^0, LTQ_{n-1}^1]| = 2^{n-1} > n(n \ge 5)$. If $LTQ_{n-1}^1 - F$ is connected, then $LTQ_n - F$ is connected, a contradiction. Assume that $LTQ_{n-1}^1 - F$ is not connected. We have $|F \cap E(LTQ_{n-1}^1)| \ge n - 1$. If $|F \cap E(LTQ_{n-1}^1)| = n$, then $F \cap E(LTQ_{n-1}^0) = \emptyset$ and $[LTQ_{n-1}^0, LTQ_{n-1}^1] \cap F = \emptyset$. And each vertex of $LTQ_{n-1}^1 - F$ has a neighbor in $LTQ_{n-1}^0 - F$, that is, $LTQ_n - F$ is connected, a contradiction. Download English Version:

https://daneshyari.com/en/article/8900878

Download Persian Version:

https://daneshyari.com/article/8900878

Daneshyari.com