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a b s t r a c t 

Strang splitting is a well established tool for the numerical integration of evolution equa- 

tions. It allows the application of tailored integrators for different parts of the vector field. 

However, it is also prone to order reduction in the case of non-trivial boundary conditions. 

This order reduction can be remedied by correcting the boundary values of the interme- 

diate splitting step. In this paper, three different approaches for constructing such a cor- 

rection in the case of inhomogeneous Dirichlet, Neumann, and mixed boundary conditions 

are presented. Numerical examples that illustrate the effectiveness and benefits of these 

corrections are included. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

In recent years, splitting schemes have been widely used to integrate evolution equations (see, for instance, [3,8,12] ). The 

main advantage of the splitting approach, compared to standard integrators, is the fact that it allows the separate treatment 

of different terms of the vector field. This usually reduces the computational effort required to solve the problem. Moreover, 

this strategy facilitates in many cases a parallel implementation and may lead to numerical methods having better geomet- 

ric properties. For all these reasons, splitting methods are highly suitable for the numerical treatment of models describing 

complex phenomena. For instance, in turbulent combustion simulations with finite-rate kinetics, hundreds of differential 

equations (one for each chemical species) have to be integrated in addition to the Navier–Stokes equations for momentum 

and energy. Moreover, such problems are typically stiff, so they require implicit solvers. In these examples, splitting sepa- 

rately treats the chemical kinetics and the convection-diffusion terms. This allows one to use appropriate numerical methods 

for each part and can thus considerably reduce the computational cost [14] . 

This paper is focused on diffusion-reaction systems. Such problems are efficiently integrated by splitting schemes [4,9] . 

In particular, we will consider equations where the diffusion is modelled by a linear elliptic differential operator and the 

reaction by a nonlinear function. The splitting approach takes into account the different nature of the components and 

replaces the nonlinear system of differential equations with a linear system and a set of ordinary differential equations, 

making the implementation easier and reducing the computational burden. Moreover, splitting methods preserve positivity 

and invariant sets provided that the integrator of each flow has the corresponding property [11] . 

When periodic or homogeneous Dirichlet boundary conditions are employed, the well-known Strang splitting scheme is 

second-order accurate, in general. However, it has been proved in the literature that the order of Strang splitting is reduced 

in the case of non trivial boundary conditions, e.g. inhomogeneous Dirichlet, Neumann, Robin boundary conditions or mixed 
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ones (see, for instance, [5,6,12] ). One possibility to overcome this order reduction is to introduce a smooth correction func- 

tion in splitting schemes such that the new reaction flow is compatible with the prescribed boundary conditions [5,6] . For 

time-invariant Dirichlet boundary conditions, this correction has to be computed only once at the beginning of the simu- 

lation. However, for time-dependent Dirichlet, Neumann, or Robin boundary conditions, the correction is time-dependent. 

In these cases, the correction function has to be computed at each time step, which could noticeably increase the compu- 

tational cost. Hence, an open problem is finding an efficient procedure to construct this function in order to preserve the 

aforementioned computational advantages of the splitting scheme. 

In this work, we present and compare different strategies to construct the correction function. First of all, we propose 

to select the correction function as the solution of an elliptic problem endowed with appropriate boundary conditions [5,6] . 

A similar elliptic problem has to be solved by the splitting method in each time step. Therefore, the computational over- 

head of this additional solution is moderate. Nevertheless, we investigate here other approaches which, depending on the 

situation, are less expensive. E.g., an effective procedure consists in computing the correction function with the help of the 

actual numerical solution. For Dirichlet boundary conditions, the correction is computed at each time step as f ( u n ), where 

f is the vector field of the reaction and u n is the numerical solution at the beginning of the current time step. This is a 

good option for problems where the application of f is cheap. However, there are situations in which additional evaluations 

of the vector field f significantly increase the computational effort, as it is the case in turbulent combustion simulations 

[14] . Therefore, we present two further techniques which are more convenient for problems having expensive reactions. 

For Dirichlet boundary conditions, we employ a widely used low-pass filter for noise reduction in linear image processing 

[1,13] , the moving average, which we extend with multiple grid levels to further increase smoothness. In the case of Neu- 

mann boundary conditions, we use a crude approximation of the elliptic problem on a hierarchy of grids, which results in a 

multigrid-like algorithm. 

The outline of the paper is as follows. In Section 2 we present the splitting approach, explain the related problem of 

order reduction and the use of a correction function to avoid it. Sections 3 and 4 are devoted to the description of efficient 

algorithms to construct the correction function for Dirichlet and Neumann boundary conditions, respectively. Moreover, we 

report some numerical tests that prove the effectiveness of the proposed approaches. Finally, we discuss some conclusions 

in Section 5 . 

2. Model problem 

In this paper, we deal with the numerical integration of diffusion-reaction systems modelled by the following initial- 

boundary value problem 

∂ t u = Du + f (u ) , (2.1a) 

Bu | ∂� = b, (2.1b) 

u (0) = u 0 , (2.1c) 

where u : [0 , T ] × � → R . Here, � ⊂ R 

d is a bounded domain with sufficiently smooth boundary ∂�, the reaction term f is 

a real smooth function, typically nonlinear. Moreover, D is a second-order elliptic differential operator (e.g. the Laplacian), 

the boundary data b : [0, T ] × ∂� may be time-dependent and 

B = β(x ) ∂ n + α(x ) (2.2) 

is a first-order differential operator with sufficiently smooth coefficients. The functions b and u 0 are also assumed to be suffi- 

ciently smooth. According to the values of the coefficients in B , different boundary conditions can be modelled. For example, 

if β(x ) = 0 and α( x ) ≥ c > 0, then (2.1b) corresponds to Dirichlet boundary conditions, whereas α(x ) = 0 and β( x ) ≥ c > 0 give 

Neumann boundary conditions. 

For the numerical solution of (2.1) we split the system into the linear diffusion equation 

∂ t v = D v , B v | ∂� = b (2.3a) 

and the nonlinear reaction equation 

∂ t w = f (w ) . (2.3b) 

Let u n be the numerical approximation to the exact solution u of (2.1) at time t = t n . To step from t n to t n +1 = t n + τ, 

where τ is the step size, we use the well-known Strang splitting approach 

u n +1 = S τ u n = ϕ τ/ 2 (ψ τ (ϕ τ/ 2 (u n ))) , (2.4) 

where ϕτ and ψ τ are the exact flows of the first (2.3a) and second (2.3b) sub-problem, respectively. In other words, Strang 

splitting for the integration of problem (2.1) consists in computing the solution v ( τ2 ) of (2.3a) with initial value v (0) = 
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