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a b s t r a c t 

Let G = (V, E) be a graph of order n , and λ = (λ1 , λ2 , . . . , λp ) a sequence of positive inte- 

gers. The sequence λ is admissible for G if λ1 + · · · + λp = n . Such an admissible sequence 

λ is said to be realizable in G if there exists a partition (V 1 , V 2 , . . . , V p ) of the vertex set V 

such that V i induces a connected subgraph of order n i in G for each i . If every admissible 

sequence is realizable in G , then we say that G is arbitrarily partitionable (AP, for short). 

We show that if a tree T of maximum degree at most n + 1 has a path containing all the 

vertices of degree n + 1 , then T � C n has a Hamiltonian path. In particular, for any caterpil- 

lar T with maximum degree at most n + 1 , T � C n is AP. In addition, if T is a caterpillar with 

�(T ) ≥ n + 4 , then T � C n is not AP. For the cases n + 2 ≤ �(T ) ≤ n + 3 , we present some 

sufficient conditions for a caterpillar T such that T � C n is AP. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Let G = (V, E) be a simple graph of order n , and λ = (λ1 , λ2 , . . . , λp ) a sequence of positive integers. The sequence λ is 

admissible for G if λ1 + · · · + λp = n . Such an admissible sequence λ is said to be realizable in G if there exists a partition 

(V 1 , V 2 , . . . , V p ) of the vertex set V such that each V i induces a connected subgraph of order n i in G . If every admissible 

sequence is realizable in G , then we say that G is arbitrarily partitionable (AP, for short). For a given integer k ∈ { 1 , 2 , . . . , n } , 
a graph G is called k-AP if every admissible sequence λ of G of length at most k is realizable in G . The notion of AP 

graphs was first introduced by Barth et al. [1] , and independently, by Hor ̌nák and Wo ́zniak [17] . Observe that having a 

(almost) perfect matching is necessary for a graph to be AP. So, the independence number of an n -vertex AP graph is at 

most � n 2 � . Questions related to arbitrarily partitions of graphs are old. In 1978 and 1977 respectively, Gy ̋ori [14] and Lovász 

[23] independently proved that k -connected graphs are k -AP. 

It is clear that a connected graph is AP if one of its spanning trees is AP. The problem of deciding whether a given 

admissible sequence is realizable in a given graph G is NP-complete [1] . We refer to Refs. [2,11,12] for algorithmic aspect 

of AP graphs. Various properties on AP trees have been shown. It is not known whether it is NP-complete for the class of 

all trees. In [1] , Barth et al. showed that this problem is polynomial for the class of tripodes. In [17] , Hor ̌nák and Wo ́zniak 

showed that the maximum degree of a AP tree is at most 6. Later, this bound has been decreased to 4 in [2] . Cichacz et al. 

[13] gave a complete characterization of AP caterpillars with four leaves. They also described two infinite families of AP 

trees with maximum degree three or four. Ravaux [26] focused on trees with a large diameter. There are also some results 

on AP star-like trees, unicyclic AP graphs and the shape of AP trees [3,18,21] . 
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Fig. 1. A Hamiltonian path P 0 of T 0 � C n . 

A graph is said to be traceable if it contains a Hamiltonian path. It is clear that each traceable graph is AP. Therefore, a 

condition for a graph being traceable implies that the graph is AP. So, there are some relevant works [15,20,24,25] trying to 

replace some known conditions for traceability by the weaker ones implying that a graph is AP. 

There are other families of AP graphs, such as OL-AP, R-AP and AP+ k . For results on these aspect, we refer to 

[5–7,9,16,19,22] . Some structure of AP graphs and minimal AP graphs are investigated in [8,10] . 

Given two graphs G and H , the Cartesian product of G and H , denoted by G � H, is the graph whose vertex set is 

V ( G ) × V ( H ) and two vertices (v 1 , u 1 ) and (v 2 , u 2 ) are adjacent in G � H if and only if either v 1 = v 2 and u 1 u 2 ∈ E ( H ) or 

u 1 = u 2 and v 1 v 2 ∈ E(G ) . In [6] , Baudon et al. conjectured that the Cartesian product of an AP graph and a traceable graph 

is AP and proved that the conjecture holds if the order of the traceable graph is at most four. 

For a vertex v of a graph G , let d(v ) denote the degree of v , and �( G ) is the maximum degree of G . In this paper, 

we focus on the Cartesian product of a tree and a cycle. In Section 2 , we show that if a tree T with �(T ) ≤ n + 1 has a 

path containing all the vertices of degree n + 1 , then T � C n is traceable. In particular, T � C n is AP for any caterpillar T with 

�(T ) ≤ n + 1 . In Section 3 , we show that for a caterpillar T , the Cartesian product T � C n is not AP if �(T ) ≥ n + 4 . For the 

cases n + 2 ≤ �(T ) ≤ n + 3 , we present some sufficient conditions for a caterpillar T such that T � C n is AP. 

2. Cartesian product of a tree and a cycle 

Let G be a graph. For a vertex v , let N(v ) denote the set of neighbors of v in G , and for a set S ⊆ V ( G ), let N(S) = ∪ v ∈ S N(v ) . 
The distance of vertices u and v in G , denoted by d(u, v ) , is the length of a shortest path joining u and v in G . In the sequel, 

we denote the vertices of the cycle C n in the clockwise direction by u 1 , u 2 , . . . , u n and the vertex (v , u j ) of T � C n by v j . 
In 1982, Batagelj and Pisanski proved the following elegant theorem. 

Theorem 2.1. (Batagelj, Pisanski [4] ) For an integer n ≥ 3 and a tree T , the Cartesian product T � C n is Hamiltonian if and only if 

�( T ) ≤ n. 

Corollary 2.2. Let G be a connected graph, and H be a Hamiltonian graph of order n. If G has a spanning tree of maximum 

degree at most n , then G � H is AP. 

Theorem 2.3. Let T be a tree with �(T ) ≤ n + 1 for an integer n ≥ 3 . If a path of T contains all the vertices of degree n + 1 , then 

T � C n is traceable. 

Proof. In view of Theorem 2.1 , we assume that �(T ) = n + 1 . Let v 0 v 1 , . . . , v s be a maximal path in T which contains all 

the vertices of maximum degree. Clearly, d(v 0 ) = d(v s ) = 1 , d(v i ) ≤ n for v i ∈ V (T ) \ V 0 , where V 0 = { v 0 , v 1 , . . . , v s } . Let t = 

max { d T (v , u ) : v ∈ V 0 , u ∈ V (T ) \ V 0 } . Let V 1 = N(V 0 ) \ V 0 and V i +1 = N(V i ) \ V i −1 for any i ∈ { 1 , . . . , t − 1 } . Since T is a tree and 

G [ V 0 ] is connected, V i is an independent set for each i ≥ 1. Let T i = T [ ∪ 

i 
j=0 

V j ] for i ∈ { 0 , 1 , . . . , t} . Clearly, T t ∼= 

T , and T i � C n is a 

subgraph of T j � C n for i ≤ j . We construct a Hamiltonian path of T � C n recursively. 

Step 1: Take a Hamiltonian path P 0 (in bold lines) of T 0 � C n as shown in Fig. 1 . 
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Step 2: Extend the Hamiltonian path P 0 of T 0 � C n to a Hamiltonian path P 1 of T 1 � C n . 
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