Partitioning the Cartesian product of a tree and a cycle

Fengxia Liu, Baoyindureng Wu*, Jixiang Meng
College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, PR China

A R T I C L E I N F O

MSC:

05C38
05C70
Keywords:
Arbitrarily partitionable graphs
Cartesian product of graphs
Caterpillars

Abstract

Let $G=(V, E)$ be a graph of order n, and $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)$ a sequence of positive integers. The sequence λ is admissible for G if $\lambda_{1}+\cdots+\lambda_{p}=n$. Such an admissible sequence λ is said to be realizable in G if there exists a partition $\left(V_{1}, V_{2}, \ldots, V_{p}\right)$ of the vertex set V such that V_{i} induces a connected subgraph of order n_{i} in G for each i. If every admissible sequence is realizable in G, then we say that G is arbitrarily partitionable (AP, for short). We show that if a tree T of maximum degree at most $n+1$ has a path containing all the vertices of degree $n+1$, then $T \square C_{n}$ has a Hamiltonian path. In particular, for any caterpillar T with maximum degree at most $n+1, T \square C_{n}$ is AP. In addition, if T is a caterpillar with $\Delta(T) \geq n+4$, then $T \square C_{n}$ is not AP. For the cases $n+2 \leq \Delta(T) \leq n+3$, we present some sufficient conditions for a caterpillar T such that $T \square C_{n}$ is AP.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let $G=(V, E)$ be a simple graph of order n, and $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)$ a sequence of positive integers. The sequence λ is admissible for G if $\lambda_{1}+\cdots+\lambda_{p}=n$. Such an admissible sequence λ is said to be realizable in G if there exists a partition $\left(V_{1}, V_{2}, \ldots, V_{p}\right)$ of the vertex set V such that each V_{i} induces a connected subgraph of order n_{i} in G. If every admissible sequence is realizable in G, then we say that G is arbitrarily partitionable (AP, for short). For a given integer $k \in\{1,2, \ldots, n\}$, a graph G is called k-AP if every admissible sequence λ of G of length at most k is realizable in G. The notion of AP graphs was first introduced by Barth et al. [1], and independently, by Horňák and Woźniak [17]. Observe that having a (almost) perfect matching is necessary for a graph to be AP. So, the independence number of an n-vertex AP graph is at most $\left\lceil\frac{n}{2}\right\rceil$. Questions related to arbitrarily partitions of graphs are old. In 1978 and 1977 respectively, Győri [14] and Lovász [23] independently proved that k-connected graphs are k-AP.

It is clear that a connected graph is AP if one of its spanning trees is AP. The problem of deciding whether a given admissible sequence is realizable in a given graph G is NP-complete [1]. We refer to Refs. [2,11,12] for algorithmic aspect of AP graphs. Various properties on AP trees have been shown. It is not known whether it is NP-complete for the class of all trees. In [1], Barth et al. showed that this problem is polynomial for the class of tripodes. In [17], Horňák and Woźniak showed that the maximum degree of a AP tree is at most 6 . Later, this bound has been decreased to 4 in [2]. Cichacz et al. [13] gave a complete characterization of AP caterpillars with four leaves. They also described two infinite families of AP trees with maximum degree three or four. Ravaux [26] focused on trees with a large diameter. There are also some results on AP star-like trees, unicyclic AP graphs and the shape of AP trees [3,18,21].

[^0]

Fig. 1. A Hamiltonian path P_{0} of $T_{0} \square C_{n}$.

A graph is said to be traceable if it contains a Hamiltonian path. It is clear that each traceable graph is AP. Therefore, a condition for a graph being traceable implies that the graph is AP. So, there are some relevant works [15,20,24,25] trying to replace some known conditions for traceability by the weaker ones implying that a graph is AP.

There are other families of AP graphs, such as OL-AP, R-AP and AP+k. For results on these aspect, we refer to [5-7,9,16,19,22]. Some structure of AP graphs and minimal AP graphs are investigated in [8,10].

Given two graphs G and H, the Cartesian product of G and H, denoted by $G \square H$, is the graph whose vertex set is $V(G) \times V(H)$ and two vertices $\left(v_{1}, u_{1}\right)$ and (v_{2}, u_{2}) are adjacent in $G \square H$ if and only if either $v_{1}=v_{2}$ and $u_{1} u_{2} \in E(H)$ or $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(G)$. In [6], Baudon et al. conjectured that the Cartesian product of an AP graph and a traceable graph is AP and proved that the conjecture holds if the order of the traceable graph is at most four.

For a vertex v of a graph G, let $d(v)$ denote the degree of v, and $\Delta(G)$ is the maximum degree of G. In this paper, we focus on the Cartesian product of a tree and a cycle. In Section 2, we show that if a tree T with $\Delta(T) \leq n+1$ has a path containing all the vertices of degree $n+1$, then $T \square C_{n}$ is traceable. In particular, $T \square C_{n}$ is AP for any caterpillar T with $\Delta(T) \leq n+1$. In Section 3, we show that for a caterpillar T, the Cartesian product $T \square C_{n}$ is not AP if $\Delta(T) \geq n+4$. For the cases $n+2 \leq \Delta(T) \leq n+3$, we present some sufficient conditions for a caterpillar T such that $T \square C_{n}$ is AP.

2. Cartesian product of a tree and a cycle

Let G be a graph. For a vertex v, let $N(v)$ denote the set of neighbors of v in G, and for a set $S \subseteq V(G)$, let $N(S)=\cup_{v \in S} N(v)$. The distance of vertices u and v in G, denoted by $d(u, v)$, is the length of a shortest path joining u and v in G. In the sequel, we denote the vertices of the cycle C_{n} in the clockwise direction by $u_{1}, u_{2}, \ldots, u_{n}$ and the vertex (v, u_{j}) of $T \square C_{n}$ by v^{j}.

In 1982, Batagelj and Pisanski proved the following elegant theorem.
Theorem 2.1. (Batagelj, Pisanski [4]) For an integer $n \geq 3$ and a tree T, the Cartesian product $T \square C_{n}$ is Hamiltonian if and only if $\Delta(T) \leq n$.

Corollary 2.2. Let G be a connected graph, and H be a Hamiltonian graph of order n. If G has a spanning tree of maximum degree at most n, then $G \square H$ is AP.

Theorem 2.3. Let T be a tree with $\Delta(T) \leq n+1$ for an integer $n \geq 3$. If a path of T contains all the vertices of degree $n+1$, then $T \square C_{n}$ is traceable.

Proof. In view of Theorem 2.1, we assume that $\Delta(T)=n+1$. Let $v_{0} v_{1}, \ldots, v_{s}$ be a maximal path in T which contains all the vertices of maximum degree. Clearly, $d\left(v_{0}\right)=d\left(v_{s}\right)=1, d\left(v_{i}\right) \leq n$ for $v_{i} \in V(T) \backslash V_{0}$, where $V_{0}=\left\{v_{0}, v_{1}, \ldots, v_{s}\right\}$. Let $t=$ $\max \left\{d_{T}(v, u): v \in V_{0}, u \in V(T) \backslash V_{0}\right\}$. Let $V_{1}=N\left(V_{0}\right) \backslash V_{0}$ and $V_{i+1}=N\left(V_{i}\right) \backslash V_{i-1}$ for any $i \in\{1, \ldots, t-1\}$. Since T is a tree and $G\left[V_{0}\right]$ is connected, V_{i} is an independent set for each $i \geq 1$. Let $T_{i}=T\left[\cup_{j=0}^{i} V_{j}\right]$ for $i \in\{0,1, \ldots, t\}$. Clearly, $T_{t} \cong T$, and $T_{i} \square C_{n}$ is a subgraph of $T_{j} \square C_{n}$ for $i \leq j$. We construct a Hamiltonian path of $T \square C_{n}$ recursively.
Step 1: Take a Hamiltonian path P_{0} (in bold lines) of $T_{0} \square C_{n}$ as shown in Fig. 1.

$$
P_{0}= \begin{cases}\frac{v_{0}^{1} v_{0}^{2} \ldots v_{0}^{n}}{v_{0}^{1} v_{0}^{2} \ldots v_{0}^{n}} \frac{v_{1}^{n} v_{1}^{n-1} \ldots v_{1}^{1}}{v_{1}^{n} v_{1}^{n-1} \ldots v_{1}^{1}} \frac{v_{2}^{1} v_{2}^{2} \ldots v_{2}^{n} v_{3}^{n} \ldots v_{s-1}^{1} \frac{v_{s}^{1} v_{s}^{2} \ldots v_{s}^{n}}{v_{2}^{1} v_{2}^{2} \ldots v_{2}^{n}} v_{3}^{n} \ldots v_{s-1}^{n} \underline{v_{s}^{n} v_{s}^{n-1} \ldots v_{s}^{1}},}{} \text { if } s \text { is } s \text { is odd }\end{cases}
$$

Step 2: Extend the Hamiltonian path P_{0} of $T_{0} \square C_{n}$ to a Hamiltonian path P_{1} of $T_{1} \square C_{n}$.

https://daneshyari.com/en/article/8900903

Download Persian Version:

https://daneshyari.com/article/8900903

Daneshyari.com

[^0]: Research supported by NSFC (Nos. 11501487, 11571294, 11531011) and the Key Laboratory Project of Xinjiang (2015KLO19).

 * Corresponding author.

 E-mail addresses: baoywu@163.com, wubaoyin@hotmail.com (B. Wu).

