Edge-partition and star chromatic index

Yiqiao Wang ${ }^{\mathrm{a}, 1, *}$, Weifan Wang ${ }^{\mathrm{b}, 2}$, Ying Wang ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ School of Management, Beijing University of Chinese Medicine, Beijing 100029, China
${ }^{\mathrm{b}}$ Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

A R T I CLE I N F O

Keywords:

Star chromatic index
Strong chromatic index
Planar graph
Outerplanar graph
Edge-partition

Abstract

The star chromatic index $\chi_{\text {st }}^{\prime}(G)$ of a graph G is the smallest integer k for which G has a proper edge k-coloring without bichromatic paths or cycles of length four. The strong chromatic index $\chi_{s}^{\prime}(G)$ of G is the smallest integer k for which G has a proper edge k coloring such that any two edges at distance at most two get distinct colors.

In this paper, we prove that if a graph G can be edge-partitioned into two graphs F and H, then $\chi_{s t}^{\prime}(G) \leq \chi_{s t}^{\prime}(F)+\chi_{s}^{\prime}\left(\left.H\right|_{G}\right)$, where $\chi_{s}^{\prime}\left(\left.H\right|_{G}\right)$ denotes the strong chromatic index of H restricted on G. Using this result, we give some upper bounds of the star chromatic index for planar graphs. Precisely, we show that (1) if G is a planar graph with maximum degree Δ, then $\chi_{\text {st }}^{\prime}(G) \leq 2.75 \Delta+18$; (2) if G is a planar graph without 4 -cycles, then $\chi_{s t}^{\prime}(G) \leq$ $\lfloor 1.5 \Delta\rfloor+18$; (3) if G is a planar graph of girth at least 8 , then $\chi_{s t}^{\prime}(G) \leq\lfloor 1.5 \Delta\rfloor+3$; (4) if G is a K_{4}-minor free graph, then $\chi_{s t}^{\prime}(G) \leq 2.25 \Delta+6$; and (5) if G is an outerplanar graph, then $\chi_{\text {st }}^{\prime}(G) \leq\lfloor 1.5 \Delta\rfloor+5$, which improves a result in Bezegová et al. [2], which says that $\chi_{\mathrm{st}}^{\prime}(G) \leq\lfloor 1.5 \Delta\rfloor+12$ for an outerplanar graph G.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Only simple graphs are considered in this paper. For a graph G, we use $V(G), E(G), \Delta(G)$ and $\delta(G)$ to denote the vertex set, edge set, maximum degree and minimum degree of G, respectively. If no ambiguity arises in the context, $\Delta(G)$ is simply written as Δ. A vertex v is called a k-vertex (k^{+}-vertex, k^{-}-vertex, respectively) if the degree of v is k (at least k, at most k, respectively). Let $\sigma(G)=|V(G)|+|E(G)|$. A vertex of degree 1 is called a leaf. The girth $g(G)$ of a graph G is the length of a shortest cycle in G.

A graph G has a graph H as a minor if H can be obtained from a subgraph of G by contracting edges, and G is called H-minor free if G does not have H as a minor. A graph G is planar if it can be drawn on the Euclidean plane so that any two edges intersect only at their ends. A planar graph G is outerplanar if it admits a plane embedding such that all its vertices lie on the boundary of the same face. It is shown in [5] that a graph G is an outerplanar graph if and only if G is K_{4}-minor free and $K_{2,3}$-minor free. Thus, the class of outerplanar graphs is a special class of K_{4}-minor free graphs.

A proper edge k-coloring of a graph G is a mapping $\phi: E(G) \rightarrow\{1,2, \ldots, k\}$ such that $\phi(e) \neq \phi\left(e^{\prime}\right)$ for any two adjacent edges e and e^{\prime}. The chromatic index $\chi^{\prime}(G)$ of G is the smallest integer k such that G has a proper edge k-coloring.

[^0]A proper edge k-coloring ϕ of G is called a strong-edge k-coloring if any two edges of distance at most two get distinct colors. That is, each color class is an induced matching in the graph G. The strong chromatic index, denoted $\chi_{s}^{\prime}(G)$, of G is the smallest integer k such that G has a strong-edge k-coloring.

A proper edge k-coloring ϕ of G is called a star-edge k-coloring if there do not exist bichromatic paths or cycles of length four. That is, at least three colors are needed for a path or a cycle of length four. The star chromatic index, denoted $\chi_{s t}^{\prime}(G)$, of G is the smallest integer k such that G has a star-edge k-coloring.

From the definitions, it is straightforward to see that $\chi_{s}^{\prime}(G) \geq \chi_{s t}^{\prime}(G) \geq \chi^{\prime}(G) \geq \Delta$.
The strong-edge coloring of graphs was introduced by Fouquet and Jolivet [9]. Erdős and Nešetřil put forward the following challenging conjecture:

Conjecture 1. Let G be a simple graph. Then

$$
\chi_{s}^{\prime}(G) \leq \begin{cases}1.25 \Delta^{2}, & \text { if } \Delta \text { is even; } \\ 1.25 \Delta^{2}-0.5 \Delta+0.25, & \text { if } \Delta \text { is odd }\end{cases}
$$

Using probabilistic method, Molloy and Reed [13] showed that $\chi_{s}^{\prime}(G) \leq 1.998 \Delta^{2}$ for a graph G with sufficiently large Δ. This result was furthermore improved in [3] to that $\chi_{s}^{\prime}(G) \leq 1.93 \Delta^{2}$ for any graph G. For the class of planar graphs, by using the Four-Color Theorem [1] and Vizing Theorem [20], Faudree et al. [7] gave an elegant and short proof to the result that $\chi_{s}^{\prime}(G) \leq 4 \Delta+4$. Moreover, they constructed a class of planar graphs G with $\Delta \geq 2$ so that $\chi_{s}^{\prime}(G)=4 \Delta-4$.

The star-edge coloring of a graph G was initiated by Liu and Deng [12]. It was declared in [12] that every simple graph G with $\Delta \geq 7$ satisfies $\chi_{\mathrm{st}}^{\prime}(G) \leq\left\lceil 16(\Delta-1)^{\frac{3}{2}}\right\rceil$. Recently, Dvořák, Mohar and Šámal [6] considered the star chromatic indices of complete graphs, subcubic graphs, etc. Among other things, they showed the following results and raised a conjecture:

Theorem 1. ([6]) Let G be a simple graph with maximum degree Δ and $K_{\Delta+1}$ be a complete graph of order $\Delta+1$. Then

$$
\begin{aligned}
& \chi_{\mathrm{st}}^{\prime}\left(K_{\Delta+1}\right) \leq \frac{2^{2 \sqrt{2}(1+o(1)) \sqrt{\log (\Delta+1)}}}{(\log (\Delta+1))^{\frac{1}{4}}}(\Delta+1), \\
& \chi_{\mathrm{st}}^{\prime}(G) \leq O\left(\frac{\log \Delta}{\log \log \Delta}\right)^{2} \cdot \chi_{\mathrm{st}}^{\prime}\left(K_{\Delta+1}\right),
\end{aligned}
$$

and therefore $\chi_{s t}^{\prime}(G) \leq \Delta \cdot 2^{O(1) \sqrt{\log \Delta}}$.
Theorem 2. ([6]) Let G be a subcubic graph. Then
(1) $\chi_{\mathrm{st}}^{\prime}(G) \leq 7$.
(2) If G is simple and cubic, then $\chi_{s t}^{\prime}(G) \geq 4$, and the equality holds if and only if G covers the graph of 3-cube.

Conjecture 2. ([6]) Every subcubic graph G has $\chi_{\mathrm{st}}^{\prime}(G) \leq 6$.
Bezegová et al. [2] investigated the star-edge coloring of trees and outerplanar graphs by showing the following results:
Theorem 3. ([2]) If T is a tree, then $\chi_{\mathrm{st}}^{\prime}(G) \leq\lfloor 1.5 \Delta\rfloor$. Moreover, the upper bound is tight.
Theorem 4. ([2]) Let G be an outerplanar graph. Then
(1) $\chi_{\mathrm{st}}^{\prime}(G) \leq\lfloor 1.5 \Delta\rfloor+12$.
(2) If $\Delta \leq 3$, then $\chi_{\mathrm{st}}^{\prime}(G) \leq 5$.

In [2], the authors pointed out that the constant 12 in Theorem $4(1)$ can be decreased to 9 by using more involved analysis. Moreover, they put forward the following conjecture:

Conjecture 3. ([2]) Every outerplanar graph G with $\Delta \geq 3$ has $\chi_{s t}^{\prime}(G) \leq\lfloor 1.5 \Delta\rfloor+1$.
In this paper, we investigate the star-edge coloring of planar graphs by using an edge-partition technique and a useful relation between star chromatic index and strong chromatic index. Precisely, for a planar graph G with maximum degree Δ and girth g, we prove the following results:

- $\chi_{\text {st }}^{\prime}(G) \leq 2.75 \Delta+18$.
- $\chi_{\text {st }}^{\prime}(G) \leq 2.25 \Delta+6$ if G is K_{4}-minor free.
- $\chi_{\text {st }}^{\prime}(G) \leq\lfloor 1.5 \Delta\rfloor+18$ if G has no 4 -cycles.
- $\chi_{\mathrm{st}}^{\prime}(G) \leq\lfloor 1.5 \Delta\rfloor+13$ if $g \geq 5$.
- $\chi_{s t}^{\prime}(G) \leq\lfloor 1.5 \Delta\rfloor+3$ if $g \geq 8$.
- $\chi_{\text {st }}^{\prime}(G) \leq\lfloor 1.5 \Delta\rfloor+5$ if G is outerplanar.

Note that the last result above is an improvement to the result (1) in Theorem 4.

https://daneshyari.com/en/article/8900920

Download Persian Version:

https://daneshyari.com/article/8900920

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: yqwang@bucm.edu.cn (Y. Wang), wwf@zjnu.cn (W. Wang).
 ${ }^{1}$ Research supported by NSFC (No. 11671053).
 ${ }^{2}$ Research supported by NSFC (No. 11771402).

