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a b s t r a c t 

The feedback control algorithm is applied to provide stable propagation of a two-step 

shock waves for nonlinear isothermal Euler equations despite the desired profile and ve- 

locity of the waves do not correspond to an analytical solution of the equations. Two cases 

are considered: transition to the two-step shock wave solution form the usual one-step 

wave and generation of a wave with a two-step front from an initially undisturbed veloc- 

ity field. In both cases arising of two-step shock waves is obtained and an influence of the 

control algorithm coefficients on the shape of the waves is established. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

The solutions to nonlinear coupled wave equations contain restrictions concerning their shapes, velocities and initial 

phases. Only particular solutions of nonintegrable nonlinear wave equations may be obtained by direct methods, see, first 

of all, [1–3] , however, only a few works are devoted to finding exact solutions to the coupled equations [4–7] . Even small 

variations in the relative positions of the initial coupled variables give rise to significant variations in the following waves 

behavior: loosing of the wave localization, instability, variation in the polarity of the wave and even change of the type of 

the wave, say, from a bell-shaped to a kink-shaped wave, see, e.g., [8,9] . 

The feedback control can support stable solution, in particular, oscillations caused by imperfect initial conditions can be 

suppressed by an inclusion of the additional control terms in the equation. This is provided by an additional control term 

in the equation using the speed-gradient control approach [10–12] . Recently, the speed-gradient control has been extended 

by single nonlinear wave equations [13–15] . 

The Euler equations attract considerable attention due to their use in the gas dynamics problems [16–20] . Despite some 

analytical solutions, see, e.g., [21] , these equations are mainly solved numerically, besides above mentioned references, see 

also [19,20,22–24] . Among their solutions the shock waves are one of the most important, in particular, when they contain 

several steps [20] . 

This paper deals with the control of the stable two-step shock waves propagation of the coupled isothermal nonlinear 

Euler equations. Its traveling monotonic one-step shock wave solution can be obtained, as suggested in Section 1 , as a lim- 

iting case of the isothermal Navier–Stokes equations. However, a two-step shock wave solution is not described analytically. 
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The feedback control algorithm is developed in Section 2 to support its stale propagation. It is shown numerically that vari- 

ous sets of initial conditions may result into a two-step shock wave propagation for the both coupled variables of the Euler 

equations. Moreover, the control also suppresses scheme dispersion of the Lax–Wendroff scheme used for calculations that 

gives rise to the absence of oscillations on the profile of the shock waves. 

2. Isothermal Euler equations 

The isothermal coupled compressible Euler equations are 

ρt + (ρ u ) x = 0 , (1) 

(ρ u ) t + (ρ u 

2 + a 2 ρ) x = 0 , (2) 

where ρ is density, u is velocity, a is constant sound speed. Using the notation v = ρu, the equations are conveniently 

rewritten in the form 

F t + U x = 0 , (3) 

where 

F = 

(
ρ
v 

)
, U = 

(
v 

v 2 
ρ + a 2 ρ

)

Analytical solutions may be obtained for the boundary conditions in the form 

ρ → ρ±∞ 

at x → ± ∞ , (4) 

v → 0 at x → ∞ , v → v −∞ 

at x → − ∞ . (5) 

The isothermal Navier–Stokes equations arise as a generalization of Eqs. (1) and (2) by adding the viscosity term ν( ρu x ) x , 

ν is kinematic viscosity coefficient, in Eq. (2) . In the notations ρ , v , the Navier–Stokes equations are 

ρt + v x = 0 , (6) 

v t + 

(
v 2 

ρ
+ a 2 ρ − ν ρ

[ v 
ρ

] 
x 

)
x 

= 0 , (7) 

The traveling shock wave solution to Eqs. (6) and (7) depends on the phase variable θ = x − V t . Then Eq. (6) is integrated 

once providing the solution for ρ , 

ρ = 

v 
V 

+ ρ∞ 

. (8) 

The solution (8) satisfies the boundary condition (4) at x → − ∞ while another boundary condition defines the phase 

velocity V , 

V = 

v −∞ 

ρ−∞ 

− ρ∞ 

. (9) 

Substitution of Eqs. (8) and (9) into Eq. (7) results in the ordinary differential equation (ODE) for v , (
a 2 − v 2 −∞ 

(ρ−∞ 

− ρ∞ 

) 2 

)
v + 

a 2 

v −∞ 

(ρ−∞ 

− ρ∞ 

) 
v 2 − ν ρ∞ 

v −∞ 

ρ−∞ 

− ρ∞ 

v θ = 0 . (10) 

This equation corresponds to once integrated ODE reduction of the Burgers equation. Its known kink-shaped solution or 

a shock wave solution, 

v = 

v −∞ 

2 

( 1 − tanh [ k (x − V t − x 0 )] ) , (11) 

exists provided that 

k = 

(ρ−∞ 

− ρ∞ 

) a 

2 ν
√ 

ρ−∞ 

ρ∞ 

, v −∞ 

= 

(ρ−∞ 

− ρ∞ 

) a 
√ 

ρ−∞ √ 

ρ∞ 

. (12) 

The last expression in Eqs. (12) gives rise to the final expression for the phase velocity V , 

V = a 

√ 

ρ−∞ 

ρ∞ 

(13) 
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