Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Neighbor sum distinguishing total chromatic number of planar graphs

Changqing Xu^{a,b,*}, Jianguo Li^{a,b}, Shan Ge^{a,b}

^a School of Science, Hebei University of Technology, Tianjin, 300401, PR China ^b Hebei Province Key Laboratory of Data Calculation, Tianjin 300401, PR China

ARTICLE INFO

Keywords: Neighbor sum distinguishing total chromatic number Combinatorial Nullstellensatz Planar graph

ABSTRACT

Let G = (V(G), E(G)) be a graph and ϕ be a proper k-total coloring of G. Set $f_{\phi}(v) = \sum_{uv \in E(G)} \phi(uv) + \phi(v)$, for each $v \in V(G)$. If $f_{\phi}(u) \neq f_{\phi}(v)$ for each edge $uv \in E(G)$, the coloring ϕ is called a k-neighbor sum distinguishing total coloring of G. The smallest integer k in such a coloring of G is the neighbor sum distinguishing total chromatic number, denoted by $\chi_{\Sigma}^{v}(G)$. In this paper, by using the famous Combinatorial Nullstellensatz, we determine $\chi_{\Sigma}^{v}(G)$ for any planar graph G with $\Delta(G) \ge 13$.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The terminology and notation used but undefined in this paper can be found in [2]. In this paper, we only consider simple, finite and undirected graphs. Let G = (V(G), E(G)) be a graph with maximum degree $\Delta(G)$. Let $d_G(v)$ or simply d(v) denote the degree of a vertex v in G. A vertex v is a t – vertex $(t^+$ – vertex, t^- – vertex) if d(v) = t $(d(v) \ge t, d(v) \le t)$. Let $d_t(v)$ $(d_{t^-}(v), d_{t^+}(v))$ denote the number of t-vertices $(t^-$ -vertices) adjacent to v. Let N(v) denote the neighbor set of the vertex v of G. Let G = (V(G), E(G), F(G)) be a plane graph. An l-face $f = v_1v_2 \dots v_l \in F(G)$ is a (b_1, b_2, \dots, b_l) -face, if v_i is a b_i -vertex, for $i = 1, 2, \dots, l$.

Given a graph *G* and a proper *k*-total coloring $\phi : V(G) \cup E(G) \rightarrow \{1, 2, ..., k\}$. The coloring ϕ is a *k*-neighbor sum (set) distinguishing total coloring if $f_{\phi}(u) \neq f_{\phi}(v)(S_{\phi}(u) \neq S_{\phi}(v))$ for each edge $uv \in E(G)$, where $f_{\phi}(v)(S_{\phi}(v))$ is the sum (set) of colors on the edges incident with v and the color on the vertex v. The smallest number k in such a coloring of graph *G* is the neighbor sum (set) distinguishing total chromatic number, denoted by $\chi_{\Sigma}''(G)(\chi_a''(G))$. Clearly, for any graph *G*, $\chi_a''(G) \leq \chi_{\Sigma}''(G)$. All colorings considered in this paper are proper colorings. Zhang et al. [25] proposed the following conjecture.

Conjecture 1.1 [25]. For any graph G, $\chi_a''(G) \le \Delta(G) + 3$.

Huang and Wang [8] showed that Conjecture 1.1 holds for planar graphs with $\Delta(G) \ge 11$, which was extended to $\Delta(G) \ge 10$ by Cheng et al. [4]. Wang and Huang [21] showed that if *G* is a planar graph with $\Delta(G) \ge 13$, then $\chi_a''(G) \le \Delta(G) + 2$, meanwhile, they proved that if *G* has no adjacent $\Delta(G)$ -vertices, then $\chi_a''(G) = \Delta(G) + 1$.

For *k*-neighbor sum distinguishing total coloring (or simply *k*-tnsd-coloring), Pilśniak and Woźniak [12] gave the following conjecture.

Conjecture 1.2 [12]. For any graph G, $\chi_{\Sigma}''(G) \leq \Delta(G) + 3$.

https://doi.org/10.1016/j.amc.2018.03.013 0096-3003/© 2018 Elsevier Inc. All rights reserved.

APPLIED MATHEMATICS AND COMPUTATION

^{*} Corresponding author at: School of Science, Hebei University of Technology, Tianjin, 300401, PR China. *E-mail addresses*: 2005020@hebut.edu.cn, chqxu@hebut.edu.cn (C. Xu).

Since $\chi_a''(G) \le \chi_{\Sigma}''(G)$ for any graph *G*, Conjecture 1.2 implies Conjecture 1.1. Conjecture 1.2 was confirmed for complete graphs, cycles, bipartite graphs and subcubic graphs in [12]. Dong and Wang [5] showed that Conjecture 1.2 holds for some sparse graphs. Yao et al. [23,24] considered tnsd-coloring of degenerate graphs. [6,14] considered the list version of tnsd-coloring of graphs. [7,10,11,17–20] considered tnsd-coloring of planar graphs with cycle restrictions. Song and Xu [16] determined $\chi_{\Sigma}''(G)$ for any K_4 -minor free graph *G* with $\Delta(G) \ge 5$. Li et al. [9] showed that Conjecture 1.2 holds for planar graphs with maximum degree at least 13, and subsequently the result was improved by Qu et al. [13] and by Yang et al. [22]. Cheng et al. [3] showed that if *G* is a planar graph with $\Delta(G) \ge 14$, then $\chi_{\Sigma}''(G) \le \Delta(G) + 2$. Recently, Song et al. [15] improved this result and get that:

Theorem 1.1 [15]. Let G be a planar graph with maximum degree $\Delta(G)$. Then $\chi_{\Sigma}^{r'}(G) \leq \max\{\Delta(G) + 2, 14\}$.

In this paper, we get the following results.

Theorem 1.2. Let G be a planar graph without adjacent maximum degree vertices. Then $\chi_{\Sigma}^{"}(G) \leq \max\{\Delta(G) + 1, 14\}$.

Since $\chi_{\Sigma}''(G) \ge \Delta(G) + 1$ for any graph *G*, and if *G* has adjacent $\Delta(G)$ -vertices, then $\chi_{\Sigma}''(G) \ge \Delta(G) + 2$. Thus we get the following corollary.

Corollary 1.1. Let G be a planar graph and $\Delta(G) \ge 13$. If G has no adjacent $\Delta(G)$ -vertices, then $\chi_{\Sigma}''(G) = \Delta(G) + 1$, otherwise $\chi_{\Sigma}''(G) = \Delta(G) + 2$.

Clearly, this result implies the result in [21].

2. Preliminaries

For any graph *G*, set $n_i(G) = |\{v \in V(G) \mid d_G(v) = i\}|$ for each positive integer. A graph *G'* is *smaller* than *G* if one of the following holds:

- (1) |E(G')| < |E(G)|;
- (2) |E(G')| = |E(G)| and $(n_t(G'), n_{t-1}(G'), \dots, n_1(G'))$ precedes $(n_t(G), n_{t-1}(G), \dots, n_1(G))$ with respect to the standard lexicographic order, where $t = \max{\{\Delta(G), \Delta(G')\}}$.

A graph is *minimum* for a property when no smaller graph satisfies it.

Let $P = P(x_1, x_2, ..., x_n)$ be a polynomial in $n \ (n \ge 1)$ variables. Set $c_P(x_1^{k_1} x_2^{k_2} ... x_n^{k_n})$ be the coefficient of the monomial $x_1^{k_1} x_2^{k_2} ... x_n^{k_n}$ in P, where $k_i \ (1 \le i \le n)$ is a non-negative integer. We need the famous Combinatorial Nullstellensatz to get our main result.

Lemma 2.1 [1]. (Combinatorial Nullstellensatz). Let \mathbb{F} be an arbitrary field, and let $P = P(x_1, x_2, ..., x_n)$ be a polynomial in $\mathbb{F}[x_1, x_2, ..., x_n]$. Suppose the degree of P equals $\sum_{i=1}^n k_i$, where each k_i is a nonnegative integer, and suppose $c_P(x_1^{k_1}x_2^{k_2}...x_n^{k_n}) \neq 0$. If $S_1, ..., S_n$ are subsets of \mathbb{F} with $|S_i| > k_i$, there are $s_1 \in S_1, ..., s_n \in S_n$ so that $P(s_1, ..., s_n) \neq 0$.

3. The proof of Theorem 1.2

We will prove Theorem 1.2 by contradiction. Let *G* be a minimum counterexample of Theorem 1.2. Let $k = \max \{\Delta(G) + 1, 14\}$. By the choice of *G*, any planar graph *G'* without adjacent $\Delta(G')$ -vertices which is smaller than *G* has a *k*-tnsd-coloring ϕ' . In the following, we will choose some planar graph *G'* smaller than *G* and extend the coloring ϕ' of *G'* to the desired coloring ϕ of *G* to obtain a contradiction. Without special remark, for any $x \in (V(G) \cup E(G)) \cap (V(G') \cup E(G'))$, let $\phi(x) = \phi'(x)$. For a vertex $v \in V(G)$ with d(v) = l, we usually set $N(v) = \{v_1, v_2, \dots, v_l\}$.

Noting that when we color a 4⁻-vertex, it has at most 12 forbidden colors and $k \ge 14$, so we can color it easily. Thus in the following proof, we will omit the colors of all 4⁻-vertices. In all figures of this paper, the degrees of black vertices are shown and the degrees of open vertices are at least shown.

Claim 1. For each vertex $v \in V(G)$, if $d_1(v) \ge 1$, then $d_2(v) = 0$.

Proof. Suppose to the contrary that *G* has a vertex *v* which is adjacent to a 1-vertex v_1 and a 2-vertex v_2 . Let $N(v_2) = \{u, v\}$ and *G'* be the graph by splitting v_2 into v_2 and v'_2 (see Fig. 1). Thus *G'* has a *k*-tnsd-coloring ϕ' . For each $x \in V(G) \cup E(G) \setminus \{v_2u, vv_1, vv_2, v_1, v_2\}$, set $\phi(x) = \phi'(x)$. And set $\phi(v_2u) = \phi'(v'_2u)$, $\phi(vv_2) \in \{\phi'(vv_1), \phi'(vv_2)\} \setminus \{\phi(v_2u)\}$, $\phi(vv_1) \in \{\phi'(vv_1), \phi'(vv_2)\} \setminus \{\phi(vv_2)\}$. v_1, v_2 are 2⁻-vertices. We can get a *k*-tnsd-coloring ϕ of *G*, a contradiction. \Box

Claim 2. Each t^- -vertex is not adjacent to any $(10 - t)^-$ -vertex in G, where t = 5, 6.

Proof. On the contrary, we assume that a *t*-vertex *u* is adjacent to a (10 - t)-vertex *v* for t = 5, 6 (other cases can be proved easier). Let $N(u) = \{v, u_1, ..., u_{t-1}\}$, $N(v) = \{u, v_1, ..., v_{9-t}\}$. Let G' = G - uv, then G' has a *k*-tnsd-coloring ϕ' . First, delete the colors of *u* and *v*. Next we will color uv and recolor u, v. Let S_1, S_2, S_3 be the sets of available colors for u, uv, v. Since

Download English Version:

https://daneshyari.com/en/article/8900930

Download Persian Version:

https://daneshyari.com/article/8900930

Daneshyari.com