Neighbor sum distinguishing total chromatic number of planar graphs

Changqing $\mathrm{Xu}^{\mathrm{a}, \mathrm{b}, *}$, Jianguo $\mathrm{Li}^{\mathrm{a}, \mathrm{b}}$, Shan $\mathrm{Ge}^{\mathrm{a}, \mathrm{b}}$
a School of Science, Hebei University of Technology, Tianjin, 300401, PR China
${ }^{\mathrm{b}}$ Hebei Province Key Laboratory of Data Calculation, Tianjin 300401, PR China

A R T I CLE I N F O

Keywords:

Neighbor sum distinguishing total
chromatic number
Combinatorial Nullstellensatz
Planar graph

Abstract

Let $G=(V(G), E(G))$ be a graph and ϕ be a proper k-total coloring of G. Set $f_{\phi}(v)=$ $\sum_{u v \in E(G)} \phi(u v)+\phi(v)$, for each $v \in V(G)$. If $f_{\phi}(u) \neq f_{\phi}(v)$ for each edge $u v \in E(G)$, the coloring ϕ is called a k-neighbor sum distinguishing total coloring of G. The smallest integer k in such a coloring of G is the neighbor sum distinguishing total chromatic number, denoted by $\chi_{\Sigma}^{\prime \prime}(G)$. In this paper, by using the famous Combinatorial Nullstellensatz, we determine $\chi_{\Sigma}^{\prime \prime}(G)$ for any planar graph G with $\Delta(G) \geq 13$.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The terminology and notation used but undefined in this paper can be found in [2]. In this paper, we only consider simple, finite and undirected graphs. Let $G=(V(G), E(G))$ be a graph with maximum degree $\Delta(G)$. Let $d_{G}(v)$ or simply $d(v)$ denote the degree of a vertex v in G. A vertex v is a t-vertex ($t^{+}-v e r t e x, t^{-}-v e r t e x$) if $d(v)=t(d(v) \geq t, d(v) \leq t)$. Let $d_{t}(v)\left(d_{t^{-}}(v), d_{t^{+}}(v)\right)$ denote the number of t-vertices (t^{-}-vertices, t^{+}-vertices) adjacent to v. Let $N(v)$ denote the neighbor set of the vertex v of G. Let $G=(V(G), E(G), F(G))$ be a plane graph. An l-face $f=v_{1} v_{2} \ldots v_{l} \in F(G)$ is a $\left(b_{1}, b_{2}, \ldots, b_{l}\right)$-face, if v_{i} is a b_{i}-vertex, for $i=1,2, \ldots, l$.

Given a graph G and a proper k-total coloring $\phi: V(G) \cup E(G) \rightarrow\{1,2, \ldots, k\}$. The coloring ϕ is a k-neighbor sum (set) distinguishing total coloring if $f_{\phi}(u) \neq f_{\phi}(v)\left(S_{\phi}(u) \neq S_{\phi}(v)\right)$ for each edge $u v \in E(G)$, where $f_{\phi}(v)\left(S_{\phi}(v)\right)$ is the sum (set) of colors on the edges incident with v and the color on the vertex v. The smallest number k in such a coloring of graph G is the neighbor sum (set) distinguishing total chromatic number, denoted by $\chi_{\Sigma}^{\prime \prime}(G)\left(\chi_{a}^{\prime \prime}(G)\right)$. Clearly, for any graph $G, \chi_{a}^{\prime \prime}(G) \leq \chi_{\Sigma}^{\prime \prime}(G)$. All colorings considered in this paper are proper colorings. Zhang et al. [25] proposed the following conjecture.

Conjecture 1.1 [25]. For any graph $G, \chi_{a}^{\prime \prime}(G) \leq \Delta(G)+3$.
Huang and Wang [8] showed that Conjecture 1.1 holds for planar graphs with $\Delta(G) \geq 11$, which was extended to $\Delta(G) \geq 10$ by Cheng et al. [4]. Wang and Huang [21] showed that if G is a planar graph with $\Delta(G) \geq 13$, then $\chi_{a}^{\prime \prime}(G) \leq \Delta(G)+2$, meanwhile, they proved that if G has no adjacent $\Delta(G)$-vertices, then $\chi_{a}^{\prime \prime}(G)=\Delta(G)+1$.

For k-neighbor sum distinguishing total coloring (or simply k-tnsd-coloring), Pilśniak and Woźniak [12] gave the following conjecture.

Conjecture 1.2 [12]. For any graph $G, \chi_{\Sigma}^{\prime \prime}(G) \leq \Delta(G)+3$.

[^0]Since $\chi_{a}^{\prime \prime}(G) \leq \chi_{\Sigma}^{\prime \prime}(G)$ for any graph G, Conjecture 1.2 implies Conjecture 1.1. Conjecture 1.2 was confirmed for complete graphs, cycles, bipartite graphs and subcubic graphs in [12]. Dong and Wang [5] showed that Conjecture 1.2 holds for some sparse graphs. Yao et al. [23,24] considered tnsd-coloring of degenerate graphs. [6,14] considered the list version of tnsd-coloring of graphs. [7,10,11,17-20] considered tnsd-coloring of planar graphs with cycle restrictions. Song and Xu [16] determined $\chi_{\Sigma}^{\prime \prime}(G)$ for any K_{4}-minor free graph G with $\Delta(G) \geq 5$. Li et al. [9] showed that Conjecture 1.2 holds for planar graphs with maximum degree at least 13, and subsequently the result was improved by Qu et al. [13] and by Yang et al. [22]. Cheng et al. [3] showed that if G is a planar graph with $\Delta(G) \geq 14$, then $\chi_{\Sigma}^{\prime \prime}(G) \leq \Delta(G)+2$. Recently, Song et al. [15] improved this result and get that:

Theorem 1.1 [15]. Let G be a planar graph with maximum degree $\Delta(G)$. Then $\chi_{\Sigma}^{\prime \prime}(G) \leq \max \{\Delta(G)+2,14\}$.
In this paper, we get the following results.
Theorem 1.2. Let G be a planar graph without adjacent maximum degree vertices. Then $\chi_{\Sigma}^{\prime \prime}(G) \leq \max \{\Delta(G)+1,14\}$.
Since $\chi_{\Sigma}^{\prime \prime}(G) \geq \Delta(G)+1$ for any graph G, and if G has adjacent $\Delta(G)$-vertices, then $\chi_{\Sigma}^{\prime \prime}(G) \geq \Delta(G)+2$. Thus we get the following corollary.

Corollary 1.1. Let G be a planar graph and $\Delta(G) \geq 13$. If G has no adjacent $\Delta(G)$-vertices, then $\chi_{\Sigma}^{\prime \prime}(G)=\Delta(G)+1$, otherwise $\chi_{\Sigma}^{\prime \prime}(G)=\Delta(G)+2$.

Clearly, this result implies the result in [21].

2. Preliminaries

For any graph G, set $n_{i}(G)=\left|\left\{v \in V(G) \mid d_{G}(v)=i\right\}\right|$ for each positive integer. A graph G^{\prime} is smaller than G if one of the following holds:
(1) $\left|E\left(G^{\prime}\right)\right|<|E(G)|$;
(2) $\left|E\left(G^{\prime}\right)\right|=|E(G)|$ and $\left(n_{t}\left(G^{\prime}\right), n_{t-1}\left(G^{\prime}\right), \ldots, n_{1}\left(G^{\prime}\right)\right)$ precedes $\left(n_{t}(G), n_{t-1}(G), \ldots, n_{1}(G)\right)$ with respect to the standard lexicographic order, where $t=\max \left\{\Delta(G), \Delta\left(G^{\prime}\right)\right\}$.

A graph is minimum for a property when no smaller graph satisfies it.
Let $P=P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a polynomial in $n(n \geq 1)$ variables. Set $c_{P}\left(x_{1}^{k_{1}} x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}\right)$ be the coefficient of the monomial $x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}}$ in P, where $k_{i}(1 \leq i \leq n)$ is a non-negative integer. We need the famous Combinatorial Nullstellensatz to get our main result.

Lemma 2.1 [1]. (Combinatorial Nullstellensatz). Let \mathbb{F} be an arbitrary field, and let $P=P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a polynomial in $\mathbb{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Suppose the degree of P equals $\sum_{i=1}^{n} k_{i}$, where each k_{i} is a nonnegative integer, and suppose $c_{P}\left(x_{1}^{k_{1}} x_{2}^{k_{2}} \ldots x_{n}^{k_{n}}\right) \neq$ 0 . If S_{1}, \ldots, S_{n} are subsets of \mathbb{F} with $\left|S_{i}\right|>k_{i}$, there are $s_{1} \in S_{1}, \ldots, s_{n} \in S_{n}$ so that $P\left(s_{1}, \ldots, s_{n}\right) \neq 0$.

3. The proof of Theorem 1.2

We will prove Theorem 1.2 by contradiction. Let G be a minimum counterexample of Theorem 1.2. Let $k=\max$ $\{\Delta(G)+1,14\}$. By the choice of G, any planar graph G^{\prime} without adjacent $\Delta\left(G^{\prime}\right)$-vertices which is smaller than G has a k-tnsd-coloring ϕ^{\prime}. In the following, we will choose some planar graph G^{\prime} smaller than G and extend the coloring ϕ^{\prime} of G^{\prime} to the desired coloring ϕ of G to obtain a contradiction. Without special remark, for any $x \in(V(G) \cup E(G)) \cap\left(V\left(G^{\prime}\right) \cup E\left(G^{\prime}\right)\right)$, let $\phi(x)=\phi^{\prime}(x)$. For a vertex $v \in V(G)$ with $d(v)=l$, we usually set $N(v)=\left\{v_{1}, v_{2}, \ldots, v_{l}\right\}$.

Noting that when we color a 4^{-}-vertex, it has at most 12 forbidden colors and $k \geq 14$, so we can color it easily. Thus in the following proof, we will omit the colors of all 4^{-}-vertices. In all figures of this paper, the degrees of black vertices are shown and the degrees of open vertices are at least shown.

Claim 1. For each vertex $v \in V(G)$, if $d_{1}(v) \geq 1$, then $d_{2}(v)=0$.
Proof. Suppose to the contrary that G has a vertex v which is adjacent to a 1 -vertex v_{1} and a 2 -vertex v_{2}. Let $N\left(v_{2}\right)=$ $\{u, v\}$ and G^{\prime} be the graph by splitting v_{2} into v_{2} and v_{2}^{\prime} (see Fig. 1). Thus G^{\prime} has a k-tnsd-coloring ϕ^{\prime}. For each $x \in V(G) \cup$ $E(G) \backslash\left\{v_{2} u, v v_{1}, v v_{2}, v_{1}, v_{2}\right\}$, set $\phi(x)=\phi^{\prime}(x)$. And set $\phi\left(v_{2} u\right)=\phi^{\prime}\left(v_{2}^{\prime} u\right), \phi\left(v v_{2}\right) \in\left\{\phi^{\prime}\left(v v_{1}\right), \phi^{\prime}\left(v v_{2}\right)\right\} \backslash\left\{\phi\left(v_{2} u\right)\right\}, \phi\left(v v_{1}\right) \in$ $\left\{\phi^{\prime}\left(v v_{1}\right), \phi^{\prime}\left(v v_{2}\right)\right\} \backslash\left\{\phi\left(v v_{2}\right)\right\} . v_{1}, v_{2}$ are 2^{-}-vertices. We can get a k-tnsd-coloring ϕ of G, a contradiction.

Claim 2. Each t^{-}-vertex is not adjacent to any $(10-t)^{-}$-vertex in G, where $t=5,6$.
Proof. On the contrary, we assume that a t-vertex u is adjacent to a ($10-t$)-vertex v for $t=5,6$ (other cases can be proved easier). Let $N(u)=\left\{v, u_{1}, \ldots, u_{t-1}\right\}, N(v)=\left\{u, v_{1}, \ldots, v_{9-t}\right\}$. Let $G^{\prime}=G-u v$, then G^{\prime} has a k-tnsd-coloring ϕ^{\prime}. First, delete the colors of u and v. Next we will color $u v$ and recolor u, v. Let S_{1}, S_{2}, S_{3} be the sets of available colors for u, $u v, v$. Since

https://daneshyari.com/en/article/8900930

Download Persian Version:

https://daneshyari.com/article/8900930

Daneshyari.com

[^0]: * Corresponding author at: School of Science, Hebei University of Technology, Tianjin, 300401, PR China.

 E-mail addresses: 2005020@hebut.edu.cn, chqxu@hebut.edu.cn (C. Xu).

