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In the current study, we consider the numerical solutions of the Fokker-Planck equations of 

time and space fractional derivative type with variable coefficients. The proposed method 

is based on the two-dimensional Chebyshev wavelet basis together with their correspond- 

ing operational matrices of fractional-order integration. The convergence analysis of the 

proposed method is rigorously established. Numerical tests are carried out to confirm the 

effectiveness and feasibility of the proposed scheme. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

The Fokker-Planck equation was first introduced by Fokker and Planck to describe the Brownian motion of particles [1] , 

that is, it expresses the change of probability of a random function in space and time, hence it is used to explain solute 

transport. These equations have shown their applications in diverse scientific areas, including biology [2] , physics [3,4] and 

finance [5] . The Fokker-Planck (FP) equations for stochastic dynamical systems [6–8] describe the time evolution for the 

probability density of solution paths. The space fractional Fokker-Planck equation origins from the continuous time random 

walk with the Levy jumping length distribution, while the time fractional Fokker-Planck (FP) equation arises from the con- 

tinuous time random walk of Mittag–Leffler waiting time distribution. Particularly, for describing the interaction between 

subdiffusion and time-modulation, a physically realistic time-dependent time fractional FP equation has been derived from 

the CTRW with time-modulated Boltzmann jumping probabilities [9–13] . 

Many attempts have been made to develop the approximate methods to solve fractional partial differential equations, 

such as RBF meshless method [14] , FDM [15] , HAM [16] , flatlet oblique multiwavelets method [17] and operational ma- 

trix method [18] . For the solutions of linear and nonlinear Fokker-Planck equations, these methods include ADM [19] , HPM 

[20, 21] , VIM [22,23] , RBFs method [24] , B-spline scaling functions method [25] . For numerical algorithms and solutions 

details can be found in [26,27] . In Ref. [28] , the authors applied spectral collocation method to obtain the numerical so- 

lutions of time fractional Fokker-Planck equations. In Ref. [29] , the authors studied the numerical solutions of time-space 

fractional Fokker-Planck equation with variable force field and diffusion. An efficient computational technique for solving 

the Fokker-Planck equation with space and time fractional derivative is proposed in Ref. [30] . In this paper, we applied the 
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two-dimensional Chebyshev wavelet for solving two kinds of fractional Fokker-Planck equations with variable coefficients. 

Numerical results shown that our method is effective and robust. 

The paper is organized as follows: Section 2 introduces the basic definitions of fractional derivative and integration. 

Section 3 gives the properties of the Chebyshev wavelet and their operational matrix of fractional integration. Section 4 and 

Section 5 apply the proposed method for solving the Fokker-Planck equations of time and space fractional derivatives type 

with variable coefficient, respectively. Several numerical examples are provided to test the proposed scheme in Section 6 . A 

conclusion is drawn in Section 7 . 

2. Fractional derivative and integration 

Definition 2.1. The most frequently encountered definition of fractional order is the Riemann-Liouville integral in which the 

fractional integral operator I α ( α > 0) of a function f ( t ), is defined as [31] 

I α f ( t ) = 

1 

�( α) 

∫ t 

0 
( t − τ ) 

α−1 f ( τ ) dτ, 
(
α > 0 and α ∈ � 

+ ), (1) 

where �( • ) is the well-known gamma function, and some properties of the operator I α are as follows 

I αI β f ( t ) = I α+ β f ( t ) , ( α > 0 , β > 0 ) , (2) 

I αt γ = 

�( 1 + γ ) 

�( 1 + γ + α) 
t α+ γ , ( γ > −1 ) . (3) 

Definition 2.2. The fractional derivative introduced by Caputo, in the late sixties, is called Caputo fractional derivative. The 

Caputo fractional derivative c D 

α
t of a function f ( t ) is defined as [31] 

c D 

α
t f ( t ) = 

1 

�( n − α) 

∫ t 

0 

f n ( τ ) 

( t − τ ) 
α−n +1 

dτ, ( n − 1 < α ≤ n, n ∈ N ) . (4) 

The following are two basic properties of the Caputo fractional derivative 

c D 

α
t t 

β = 

�( 1 + β) 

�( 1 + β − α) 
t β−α, ( 0 < α < β + 1 , β > −1 ) , (5) 

I αc D 

α
t f ( t ) = f ( t ) −

n −1 ∑ 

k =0 

f ( k ) 
(
0 

+ ) t k 

k ! 
, ( n − 1 < α ≤ n and n ∈ N ) . (6) 

3. Chebyshev wavelets and their properties 

The Chebyshev wavelets ψ nm 

( t ) = ψ( k , n , m , t ) have four arguments, n = 1, 2, …, 2 k − 1 , k ∈ N 

∗. t is the normalized time. 

They are defined on the interval [0, 1) as [32] 

ψ nm 

( t ) = 

{ 

2 

k/ 2 ˜ T m 

(
2 

k t − 2 n + 1 

)
, 

n − 1 

2 

k −1 
≤ t < 

n 

2 

k −1 
, 

0 , o.w. 

(7) 

with 

˜ T m 

( t ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 √ 

π
, m = 0 , √ 

2 

π
T m 

( t ) , m = 1 , 2 , . . . , M − 1 . 

(8) 

Here T m 

( t ) are the Chebyshev polynomials with the weight function ω(t) = 1 / 
√ 

1 − t 2 and satisfy the following recursive 

formula 

T 0 ( t ) = 1 , T 1 ( t ) = t , T m +1 ( t ) = 2 t T m 

( t ) − T m −1 ( t ) , m = 1 , 2 , . . . 

A function f ( t ) defined over L 2 ω n [ 0 , 1 ) may be expanded as 

f ( t ) � 

2 k −1 ∑ 

n =1 

M−1 ∑ 

m =0 

c nm 

ψ nm 

( t ) = C T 
( t ) , (9) 

where 

c nm 

= 〈 f ( t ) , ψ nm 

( t ) 〉 ω n = 

∫ 1 

0 

ω n ( t ) ψ nm 

( t ) dt , (10) 
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