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ARTICLE INFO ABSTRACT
KeyWO_rdSI ) In the current study, we consider the numerical solutions of the Fokker-Planck equations of
Two-dimensional Chebyshev wavelet time and space fractional derivative type with variable coefficients. The proposed method

Fokker-Planck equations of time and space
derivatives type

Variable coefficients

Numerical solutions

is based on the two-dimensional Chebyshev wavelet basis together with their correspond-
ing operational matrices of fractional-order integration. The convergence analysis of the
proposed method is rigorously established. Numerical tests are carried out to confirm the
effectiveness and feasibility of the proposed scheme.
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1. Introduction

The Fokker-Planck equation was first introduced by Fokker and Planck to describe the Brownian motion of particles [1],
that is, it expresses the change of probability of a random function in space and time, hence it is used to explain solute
transport. These equations have shown their applications in diverse scientific areas, including biology [2], physics [3,4] and
finance [5]. The Fokker-Planck (FP) equations for stochastic dynamical systems [6-8] describe the time evolution for the
probability density of solution paths. The space fractional Fokker-Planck equation origins from the continuous time random
walk with the Levy jumping length distribution, while the time fractional Fokker-Planck (FP) equation arises from the con-
tinuous time random walk of Mittag-Leffler waiting time distribution. Particularly, for describing the interaction between
subdiffusion and time-modulation, a physically realistic time-dependent time fractional FP equation has been derived from
the CTRW with time-modulated Boltzmann jumping probabilities [9-13].

Many attempts have been made to develop the approximate methods to solve fractional partial differential equations,
such as RBF meshless method [14], FDM [15], HAM |[16], flatlet oblique multiwavelets method [17] and operational ma-
trix method [18]. For the solutions of linear and nonlinear Fokker-Planck equations, these methods include ADM [19], HPM
[20, 21], VIM [22,23], RBFs method [24], B-spline scaling functions method [25]. For numerical algorithms and solutions
details can be found in [26,27]. In Ref. [28], the authors applied spectral collocation method to obtain the numerical so-
lutions of time fractional Fokker-Planck equations. In Ref. [29], the authors studied the numerical solutions of time-space
fractional Fokker-Planck equation with variable force field and diffusion. An efficient computational technique for solving
the Fokker-Planck equation with space and time fractional derivative is proposed in Ref. [30]. In this paper, we applied the
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two-dimensional Chebyshev wavelet for solving two kinds of fractional Fokker-Planck equations with variable coefficients.
Numerical results shown that our method is effective and robust.

The paper is organized as follows: Section 2 introduces the basic definitions of fractional derivative and integration.
Section 3 gives the properties of the Chebyshev wavelet and their operational matrix of fractional integration. Section 4 and
Section 5 apply the proposed method for solving the Fokker-Planck equations of time and space fractional derivatives type
with variable coefficient, respectively. Several numerical examples are provided to test the proposed scheme in Section 6. A
conclusion is drawn in Section 7.

2. Fractional derivative and integration

Definition 2.1. The most frequently encountered definition of fractional order is the Riemann-Liouville integral in which the
fractional integral operator I* (o« > 0) of a function f(t), is defined as [31]
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Definition 2.2. The fractional derivative introduced by Caputo, in the late sixties, is called Caputo fractional derivative. The
Caputo fractional derivative (DY of a function f(t) is defined as [31]
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The following are two basic properties of the Caputo fractional derivative
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3. Chebyshev wavelets and their properties

The Chebyshev wavelets Y nn(t) = (k, n, m, t) have four arguments, n=1, 2, ..., 2k=1, k € N*. t is the normalized time.
They are defined on the interval [0, 1) as [32]
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Here Tpy(t) are the Chebyshev polynomials with the weight function w(t) = 1/4/1 — t2 and satisfy the following recursive
formula

To(t)=1, Ti(t)=t, Tp1(t) =2tTu(t) —Tp_1(t), m=1,2,...
A function f{t) defined over Lfon[O, 1) may be expanded as
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