On the extremal eccentric connectivity index of graphs

Yueyu Wu, Yaojun Chen*
Department of Mathematics, Nanjing University, Nanjing 210093, PR China

A R T I C L E I N F O

Keywords:

Eccentric connectivity index
Minimum degree
Degree sequence
Radius

Abstract

For a graph $G=(V, E)$, the eccentric connectivity index of G, denoted by $\xi^{c}(G)$, is defined as $\xi^{c}(G)=\sum_{v \in V} \varepsilon(v) d(v)$, where $\varepsilon(v)$ and $d(v)$ are the eccentricity and the degree of v in G, respectively. In this paper, we first establish the sharp lower bound for the eccentric connectivity index in terms of the order and the minimum degree of a connected G, and characterize some extremal graphs, which generalize some known results. Secondly, we characterize the extremal trees having the maximum or minimum eccentric connectivity index for trees of order n with given degree sequence. Finally, we give a sharp lower bound for the eccentric connectivity index in terms of the order and the radius of a unicyclic G, and characterize all extremal graphs.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

All graphs considered in this paper are simple and undirected. Let $G=(V(G), E(G))$ be a graph with $e(G)=|E(G)|$. The neighborhood of a vertex v, denoted by $N(v)$, is the set of vertices adjacent to v in G and $N[v]=N(v) \cup\{v\}$. The degree of v is $d(v)=|N(v)|$. Let $\delta(G)$ and $\Delta(G)$ denote the minimum and maximum degrees of G, respectively. If $X \subseteq V(G)$, then $G[X]$ denotes the subgraph induced by X and $G-X=G[V(G)-X]$. For $Y \subseteq E(G)$, then $G-Y$ denotes the graph obtained from G by deleting all the edges in Y. If $X=\{v\}$ or $Y=\{u v\}$, we write $G-v$ or $G-u v$ for $G-X$ or $G-Y$, respectively. If $u v \notin E(G)$, then $G+u v$ is a graph obtained from G by adding an edge $u v$. The distance of two distinct vertices u, v, denoted by $d(u, v)$, is the length of a shortest (u, v)-path in G. The eccentricity $\varepsilon(v)$ of a vertex v is the distance between v and a furthest vertex from v. An eccentric vertex of a vertex v is a vertex furthest away from v. The diameter and radius of G, denoted by diam(G) and $\operatorname{rad}(G)$, are defined as the maximum and the minimum of the eccentricities in G, respectively. A center of a graph is a vertex whose eccentricity is equal to $\operatorname{rad}(G)$. Denote by S_{n}, P_{n} and K_{n}, a star, a path and a complete graph of order n, respectively. A rooted tree T_{u} is a tree with a specified vertex u, called the root of T. A caterpillar is a tree in which the vertices of degree at least two induce a path. The join of two graphs G and H, denoted by $G+H$, is the graph obtained from the disjoint union $G \cup H$ by adding the edges $\{x y \mid x \in V(G), y \in V(H)\}$.

Let T be a caterpillar and $P=v_{1} v_{2} \ldots v_{k}$ the path induced by the vertices of degree at least 2 in T. If $\min \left\{d\left(v_{i}\right), d\left(v_{k-i+1}\right)\right\} \geq \max \left\{d\left(v_{i+1}\right), d\left(v_{k-i}\right)\right\}$ for $1 \leq i \leq\left\lceil\frac{k}{2}\right\rceil-1$, then we call T a greedy caterpillar. Let T be a tree with root u. The height of a vertex $v \in V(T)$ is $h_{T}(v)=d(u, v)$ and $h(T)=\max \left\{h_{T}(v) \mid v \in V(T)\right\}$. The level-degree sequence of T is the list of multisets L_{i} which contains the degrees of vertices of height i. We call T a level-greedy tree if the vertices of T can be numbered such that if $h_{T}\left(v_{i}\right)=h_{T}\left(v_{j}\right)$, then $d\left(v_{i}\right) \geq d\left(v_{j}\right)$ if and only if $i<j$, and if $h_{T}\left(v_{i}\right)=h_{T}\left(v_{j}\right)=\ell \geq 2$ and v_{i}, v_{j} have distinct neighbors of height $\ell-1$, say $v_{i} v_{t_{i}}, v_{j} v_{t_{j}} \in E(T)$ with $t_{i}<t_{j}$, then $d\left(v_{i}\right) \geq d\left(v_{j}\right)$. Furthermore, if T is a level-greedy tree such that $d\left(v_{i}\right) \geq d\left(v_{j}\right)$ if $h_{T}\left(v_{i}\right)<h_{T}\left(v_{j}\right)$, then we call T a greedy tree.

[^0]A unicyclic graph is the one obtained by adding an edge to a tree. Let U_{i}^{n} be the graph of order n obtained from a cycle C_{i} by attaching $n-i$ pendent vertices to some vertex of the cycle. Let $\mathscr{G}_{2 r-1}^{n}$ be the set of such graphs of order $n \geq 3 r-1$: choose a maximum independent set I of a cycle $C_{2 r-1}$ and one vertex w of the nontrivial component of $C_{2 r-1}-I$, attach one pendent vertex to each vertex of $I \cup\{w\}$, and the other vertices as pendent vertices are attached to the vertices on the cycle arbitrarily.

A graph G is called k-connected if $|V(G)|>k$ and $G-X$ is connected for any $X \subseteq V$ with $|X|<k$. The connectivity $\kappa(G)$ is the maximum value of k for which G is k-connected. A graph G is called k-edge connected if $e(G)>k$ and $G-Y$ is connected for any $Y \subseteq E(G)$ with $|Y|<k$. The edge connectivity $\lambda(G)$ is the maximum value of k for which G is k-edge connected.

The eccentric connectivity index of G, denoted by $\xi^{c}(G)$, introduced by Sharma et al. in [11], is defined as

$$
\xi^{c}(G)=\sum_{v \in V} \varepsilon(v) d(v)=\sum_{u v \in E} \omega(u v)
$$

where $\omega(u v)=\varepsilon(u)+\varepsilon(v)$ is called the weight of the edge $u v$.
As is known that the eccentric connectivity index has been used extensively in physical and biological properties, see [3,10]. It is also being used both in QSAR studies and in the environmental of hazard assessment chemicals, see [6]. Recently, Qi and Du [9] calculated similar indices concerning eccentricity for trees.

The eccentric connectivity index has been evaluated for some classes of graphs. Zhou and Du [13] and Morgan et al. [7] provided independently the sharp lower bound for eccentric connectivity index of a tree with given order and diameter. Morgan et al. [8] established the sharp lower bound for eccentric connectivity index of a connected graph with given diameter. The lower bound for $\xi^{c}(G)$ of any connected graph G was first studied by Zhou and Du [13] who showed that

Theorem 1. $\xi^{c}(G) \geq 3 n-3$ for any connected graph G of order $n \geq 4$ with equality if and only if $G \cong S_{n}$.
Observe the extremal graph in Theorem 1 is of minimum degree one, and $\xi^{c}(G)$ depends on the degree of each vertex of G, one may think that $\xi^{c}(G)$ should have some relations with the minimum degree of a graph G. In this paper, our first goal is to extend Theorem 1 in terms of the order and the minimum degree of a graph G.
Theorem 2. Let G be a connected graph of order $n \geq 2 \delta^{2}-2 \delta+4$ with $\delta(G)=\delta$. Then $\xi^{c}(G) \geq(2 \delta+1) n-2 \delta-1$ for δ is odd or δ is even and n is odd with equality if and only if $\pi(G)=(n-1, \delta, \delta, \ldots, \delta)$, and $\xi^{c}(G) \geq(2 \delta+1) n-2 \delta+1$ for δ is even and n is even with equality if and only if $\pi(G)=(n-1, \delta+1, \delta, \ldots, \delta)$.

For any connected graph of order at least 4 is of minimum degree at least one, we can see that Theorem 1 is a special case of Theorem 2.

Remark 1. The lower bound in Theorem 2 is attained which can be seen as follows. If $\delta=1$, then $G=S_{n}$ takes the lower bound. If $\delta=2$, then the lower bound can be attained by $G=K_{1}+\frac{n-1}{2} K_{2}$ if n is odd and by $G=K_{1}+\left(\frac{n-4}{2} K_{2} \cup P_{3}\right)$ if n is even. If $\delta \geq 3$, then $G=K_{1}+H_{\delta-1, n-1}$ takes the lower bound, where $H_{\delta-1, n-1}$ is a graph of order $n-1$, constructed by Harary in [4], with the following properties: $\kappa\left(H_{\delta-1, n-1}\right)=\delta\left(H_{\delta-1, n-1}\right)=\delta-1, \pi\left(H_{\delta-1, n-1}\right)=(\delta-1, \delta-1, \ldots, \delta-1)$ if one of $\delta-1$ and $n-1$ is not odd and $\pi\left(H_{\delta-1, n-1}\right)=(\delta, \delta-1, \ldots, \delta-1)$ if both $\delta-1$ and $n-1$ are odd. Thus, G is a graph of order n with $\delta(G)=\kappa(G)=\delta, \pi(G)=(n-1, \delta, \delta, \ldots, \delta)$ if one of δ and n is not even and $\pi(G)=(n-1, \delta+1, \delta, \ldots, \delta)$ if both δ and n are even.

Noting that $\kappa(G) \leq \lambda(G) \leq \delta(G)$ for any graph G, by Theorem 2 and Remark 1, we have the following corollaries.
Corollary 1. Let G be a connected graph of order $n \geq 2 \lambda^{2}-2 \lambda+4$ with $\lambda(G)=\lambda$. Then $\xi^{c}(G) \geq(2 \lambda+1) n-2 \lambda-1$ for λ is odd or λ is even and n is odd with equality if and only if $\pi(G)=(n-1, \lambda, \lambda, \ldots, \lambda)$, and $\xi^{c}(G) \geq(2 \lambda+1) n-2 \lambda+1$ for λ is even and n is even with equality if and only if $\pi(G)=(n-1, \lambda+1, \lambda, \ldots, \lambda)$.

Corollary 2. Let G be a connected graph of order $n \geq 2 \kappa^{2}-2 \kappa+4$ with $\kappa(G)=\kappa$.
Then $\xi^{c}(G) \geq(2 \kappa+1) n-2 \kappa-1$ for κ is odd or $\kappa \geq 4$ is even and n is odd with equality if and only if $\pi(G)=(n-$ $1, \kappa, \kappa, \ldots, \kappa)$, and $\xi^{c}(G) \geq(2 \kappa+1) n-2 \kappa+1$ for $\kappa \geq 4$ is even and n is even with equality if and only if $\pi(G)=(n-1, \kappa+$ $1, \kappa, \ldots, \kappa)$.

By the graphs given in Remark 1, the lower bounds in Corollaries 1 and 2 can be attained except the one in Corollary 2 when $\kappa(G)=2$. In such a case, the lower bound in Corollary 2 can be improved as below.

Theorem 3. Let G be a connected graph of order $n \geq 5$ with $\kappa(G)=2$. Then $\xi^{c}(G) \geq 6 n-10$ with equality if and only if $G \cong$ $K_{2}+(n-2) K_{1}$ for $n \geq 6$ and $G \in\left\{C_{5}, K_{2}+3 K_{1}\right\}$ for $n=5$.

Remark 2. By the definition of $\xi^{c}(G)$, we can see that Theorem 2 does not hold if G is a δ-regular graph with $\operatorname{diam}(G) \leq 2$. It is well known that such a graph does not exist if $n>\delta^{2}+1$, and there do exist some δ-regular graphs of order n such that $n=\delta^{2}+1$ and $\operatorname{diam}(G)=2$. For $\delta=2,3, C_{5}$ and the Peterson graph as illustrated in Fig. 1 are the graphs with diameter 2 and $\delta^{2}+1$ vertices, respectively. This is to say that at least $n>\delta^{2}+1$ is necessary in Theorem 2. Hoffman and Singleton [5] showed that a δ-regular graph of order $\delta^{2}+1$ with diameter 2 can exist only if $\delta=2,3,7$ or 57 , which means that perhaps $n>\delta^{2}+1$ is not tight in general. On the other hand, if $\delta-1$ is a prime power, then based on a result given in [12], one can construct a δ-regular graph with connectivity δ and diameter 2 of order $\delta^{2}-\delta+2$ if $\delta-1$ is even or order

https://daneshyari.com/en/article/8900970

Download Persian Version:

https://daneshyari.com/article/8900970

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: yaojunc@nju.edu.cn (Y. Chen).

