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In this paper, we investigate a classical Lotka–Volterra predator–prey model with tele- 

phone noise and a higher order perturbation of white noise. The existence of a unique 

positive solution is discussed and sufficient conditions for the existence of an ergodic sta- 

tionary distribution is established. Some simulation figures are presented to illustrate the 

analytical findings. 
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1. Introduction 

For a Lotka–Volterra predator–prey model { 

˙ x (t) = x (t) 
(
a − by (t) 

)
, 

˙ y (t) = y (t) 
(

− c + hx (t) 
)
, 

(1.1) 

where a , b , c , h are positive constants notice h ̇ x (t) − a d[ log y (t)] 
dt 

= ac − bhx (t ) y (t ) and b ̇ y (t) − c d[ log x (t)] 
dt 

= −ac + bhx (t ) y (t ) , and 

the system (1.1) has a periodic orbit hx (t) − a log y (t) + by (t) − c log x (t) = C (here C is an arbitrary constant). If there is no 

influence from the environment, the population of system (1.1) develops periodically [1,2] . However environmental noise is 

an important component in an ecosystem (see e.g. [21,22] ) and noise influences an ecological system in a variety of ways. 

Consider a popular type of environmental noise, namely white noise or Brownian motion (white noise analysis was initiated 

by Hida [25] ). Environmental noise has the potential to have a huge impact on the population dynamics of a system, for 

example sufficiently large white noise can cause a population that would otherwise explode or tend to a unique endemic 

equilibrium to die out [28] . In the literature many authors have investigated population systems subject to white noise 

and dynamic properties such as existence of positive solutions, stochastic persistence, stationary distribution and extinction 
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were examined (see [3–10,12–18] ). Environment fluctuations manifest themselves mainly as fluctuations in the intrinsic 

growth rate of the prey population and in the death rate of the predator population [20] , and in this paper, we assume 

the parameters a and −c of system (1.1) are perturbed by a → a + αx (t) ˙ B 1 (t) , −c → −c + βy (t) ˙ B 2 (t) , where B 1 ( t ) and B 2 ( t ) 

are one-dimensional standard Brownian motion with B i (0) = 0 (i = 1 , 2) (here α2 and β2 are the intensities of the white 

noises). As a result, system (1.1) becomes a stochastic differential system {
dx (t) = x (t)[ a − by (t)] dt + αx 2 (t) dB 1 (t) , 

dy (t) = y (t )[ −c + hx (t )] dt + βy 2 (t ) dB 2 (t ) . 

Also we note that the birth and death rates of some species in the dry season will be much different from those in the rainy 

season. Likewise, the carrying capacities often vary according to the changes in nutrition and/or food resources. They are 

random discrete events that happen at random epochs. A convenient formulation here is to use a continuous-time Markov 

chain taking values in a finite set and the resulting dynamic system is the so-called regime switching differential equations 

(that is, with colored noise, say Telegraph noise); we refer the reader to [3–5,7–9,11–16,19,24,26] . We introduce regime 

switching with the continuous-time Markov chain { r ( t ), t ≥ 0} taking values in a finite state space S = { 1 , . . . , N} , and system 

(1.1) can be expressed as {
dx (t) = x (t )[ a (r(t )) − b(r(t )) y (t )] dt + α(r(t )) x 2 (t ) dB 1 (t ) , 

dy (t) = y (t )[ −c(r(t )) + h (r(t )) x (t )] dt + β(r(t )) y 2 (t ) dB 2 (t ) . 
(1.2) 

Takeuchi et al. [11] studied system (1.2) with no white noise and discussed periodic orbits in different environmental 

regimes. Using white noise higher order perturbation, Luo and Mao [12] showed system (1.2) has a unique positive so- 

lution and they considered the stochastically ultimately boundedness and the boundedness of moment average in time. 

The authors in [23] studied periodic solutions and the stationary distribution of stochastic SIR epidemic models and in 

[4] the authors introduced a stochastic logistic model under regime switching II and considered its stochastic permanence. 

In [18] and [19] the authors studied a stochastic Logistic equation under regime switching and discussed global asymptotical 

stability and nonpersistence and stochastic permanence. However, there are currently no results concerning the stationary 

distribution and the ergodic property of system (1.2) . There are a few papers in the literature which study the stationary 

distribution of population models affected by both white noise and regime switching (see [3,4,7,9,24] ). Note the stationary 

distribution can be viewed as weak stability. Using ergodic theory given in [13,14] , Zu et al. [7] considered a Lotka–Volterra 

stochastic predator–prey model having colored noise, Liu et al. [9] and Settati and Lahrouz [3] considered a stochastic Lotka–

Volterra mutualistic system under regime switching, and obtained the ergodic property and positive recurrence. The authors 

in [24] investigated a stochastic Susceptible-Infective epidemic model under regime switching and they obtained the thresh- 

old between extinction and the existence of the stationary distribution. To the best of our knowledge there are no related 

results on the ergodic property and positive recurrence of the Lotka–Volterr predator–prey model affected by both Markov 

switching and white noise higher order perturbation. In this paper, we will discuss the existence of an ergodic stationary 

distribution of system (1.2) . We assume that, for each k ∈ S , a ( k ), b ( k ), c ( k ), h ( k ), α( k ), β( k ) are positive constants. 

Section 2 surveys some necessary properties of a Markov process and a result on ergodicity and stationary distributions. 

Section 3 gives sufficient conditions for the existence of stationary distribution and the ergodic theory on stochastic system 

(1.2) under regime switching. In Section 4 , we present some figures to illustrate our main results. 

2. Preliminaries 

Throughout this paper, unless otherwise specified, let (�, F , { F t } t≥0 , P ) be a complete probability space with a filtration 

{ F t } t≥0 satisfying the usual conditions (i.e. it is right continuous and F 0 contains all P -null sets). We denote by R 2 + the 

positive zone in R 2 , i.e., R 2 + = { (x, y ) ∈ R 2 : x > 0 , y > 0 } . Let r ( t ), t ≥ 0, be a right-continuous Markov chain on the probability 

space (�, F , { F t } t≥0 , P ) taking values in a finite-state space S = { 1 , . . . , N} with the generator � = (γu v ) 1 ≤u, v ≤N given by 

P { r(t + �t) = v | r(t) = u } = 

{
γu v �t + o(�t) , if u � = v , 
1 + γu v �t + o(�t) , if u = v , 

where �t > 0 and γu v is the transition rate from u to v and γu v ≥ 0 if u � = v , while γuu = −∑ 

u � = v γu v . Almost every sample 

path of r ( t ) is a right-continuous step function with a finite number of sample jumps in any finite subinterval of R + = [0 , ∞ ) 

[27] . There is a sequence { τ i } i ≥ 0 of finite-valued F t -stopping times such that 0 = τ0 < τ1 < . . . < τi → ∞ a.s. and 

r(t) = 

∞ ∑ 

i =0 

r(τi ) 1 [ τi ,τi +1 ) (t) , 

where 1 A denotes the indicator function of set A [26] . As a standing hypothesis, in this paper, we assume that the Markov 

chain r ( t ) is irreducible and independent of the Brownian motion and assume γu v > 0 if u � = v . From the classical theory of 

a Markov chain, the finite states imply the ergodic property and positive recurrence of r ( t ), t ≥ 0. Hence the Markov chain 

has a unique stationary (probability) distribution π = (π1 , . . . , πN ) ∈ R 1 ×N such that π� = 0 , 
N 
k =1 

πk = 1 , πk > 0 , ∀ k ∈ S . 

For any vector e = (e (1) , . . . , e (N)) T , let ˆ e = min k ∈ S { e (k ) } and ě = max k ∈ S { e (k ) } . 
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