Optimizing Hamiltonian panconnectedness for the crossed cube architecture

Tzu-Liang Kung ${ }^{\mathrm{a}, *}$, Hon-Chan Chen ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Computer Science and Information Engineering, Asia University, Wufeng, Taichung City 413, Taiwan
${ }^{\mathrm{b}}$ Department of Information Management, National Chin-Yi University of Technology, Taiping, Taichung City 411, Taiwan

A R T I C L E I N F O

Keywords:

Hamiltonian
Panconnected
Interconnection network
Crossed cube
Path embedding

Abstract

A graph G of k vertices is panconnected if for any two distinct vertices x and y, it has a path of length l joining x and y for any integer l satisfying $d_{G}(x, y) \leq l \leq k-1$, where $d_{G}(x, y)$ denotes the distance between x and y in G. In particular, when $k \geq 3, G$ is called Hamiltonian r-panconnected if for any three distinct vertices x, y, and z, there exists a Hamiltonian path P of G with $d_{P}(x, y)=l$ such that $P(1)=x, P(l+1)=y$, and $P(k)=z$ for any integer l satisfying $r \leq l \leq k-r-1$, where $P(i)$ denotes the i th vertex of path P for $1 \leq i \leq k$. Then, this paper shows that the n-dimensional crossed cube, which is a popular variant of the hypercube topology, is Hamiltonian ($\left\lceil\frac{n+1}{2}\right\rceil+1$)-panconnected for $n \geq 4$. The lower bound $\left\lceil\frac{n+1}{2}\right\rceil+1$ on the path length is sharp, which is the shortest that can be embedded between any two distinct vertices with dilation 1 in the n-dimensional crossed cube.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Various types of interconnection networks have been proposed for parallel and distributed computing [15,24,27]. A typical methodology to model the topological structure of an interconnection network is based on the graph theory. Widely applied graph structures include trees, paths, cycles, etc. Among the many kinds of network topologies, the hypercube [26] is a popular architecture, and the crossed cube [11] is a well-known one of hypercube variants [1,9,10,29]. Compared with the hypercube, the crossed cube has a smaller diameter but relies on a more complicated shortest-path routing [4,11]. Additionally, the crossed cube has many other attractive properties [4-6,12-14,16,18,21,28]. Before proceeding to study topological properties of the crossed cube, we introduce some fundamental graph-theory definitions and notations that will be used in the paper.

Throughout this paper, graphs are finite, simple, and undirected. For those not defined here, we follow the standard terminology given by Bondy and Murty [3]. An undirected graph G consists of a vertex set $V(G)$ and an edge set $E(G)$, where $V(G)$ is a finite set, and $E(G)$ is a subset of all unordered pairs of distinct elements in V. For notational simplicity, $u v$ denotes the edge joining vertices u and v. Equivalently, u and v are adjacent to each other in G. A graph H is a subgraph of G, denoted by $H \subseteq G$, if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$, and H is a spanning subgraph of G (or equivalently, H spans $G)$ if $V(H)=V(G)$. Let S be a nonempty subset of $V(G)$. The subgraph of G induced by S is a graph whose vertex set is S and whose edge set consists of all the edges of G joining any two vertices in S.

[^0]

Fig. A.1. Illustrating $C Q_{3}$ and $C Q_{4}$.

A path P of length $l, l \geq 1$, from vertex u to vertex v in a graph G is defined as an ordered sequence of distinct vertices $x_{1} x_{2} \cdots x_{l+1}$ such that $x_{1}=u, x_{l+1}=v$, and $x_{i} x_{i+1} \in E(G)$ for every $i, 1 \leq i \leq l$. For convenience, we write P as $x_{1} \cdots x_{i} R$ $x_{j} \cdots x_{l+1}$ if $R \subseteq P$ and $R=x_{i} \cdots x_{j}$ for $1 \leq i<j \leq l+1$. We also use $u P v$ to stand for a path P with u and v as the starting and ending vertices, respectively. The length of P is denoted by $\ell(P)$. The i th vertex of P is denoted by $P(i)$; i.e., $P(i)=x_{i}$. In particular, let $\operatorname{rev}(P)$ represent the reverse of P; i.e., $\operatorname{rev}(P)=x_{l+1} x_{l} \cdots x_{1}$. The distance between two distinct vertices u and v in G, denoted by $d_{G}(u, v)$, is the length of the shortest path connecting u and v. A cycle is a path with at least three vertices such that the first vertex is linked to the last one. For clarity, a cycle of length $l, l \geq 3$, is represented as $x_{1} x_{2} \cdots x_{l}$ x_{1} and is simply denoted by C_{l}. A Hamiltonian path (respectively, Hamiltonian cycle) of G is a path (respectively, cycle) that spans G. Then, a graph G is Hamiltonian if it contains at least one Hamiltonian cycle, and G is Hamiltonian connected if there exists a Hamiltonian path of G joining each pair of distinct vertices.

A graph G of k vertices is panconnected [2] if for any two distinct vertices x and y, it has a path of length l joining x and y for any integer l satisfying $d_{G}(x, y) \leq l \leq k-1$. Strictly speaking, a panconnected graph must contain a path of length 2 joining any two adjacent vertices. However, there does not exist any C_{3} in many well-known interconnection networks, including hypercubes, crossed cubes, star graphs, and so on. Hence, we say that a graph G of k vertices is r-panconnected if for any two distinct vertices x and y, it has a path of length l joining x and y for $r \leq l \leq k-1$. This property has been widely addressed for embedding paths on many kinds of interconnection networks, such as the hypercube, the crossed cube, and the augmented cube [5,13,14,19,20,25]. For example, Fan et al. [14] proved that the n-dimensional crossed cube is $\left(\left\lceil\frac{n+1}{2}\right\rceil+1\right)$-panconnected. Recently, Kung and Chen [17] extended the definition of r-panconnectedness to propose a new property: a graph G of k vertices, $k \geq 3$, is Hamiltonian r-panconnected if for any three distinct vertices x, y, and z, there exists a Hamiltonian path P of G with $d_{P}(x, y)=l$ such that $P(1)=x, P(l+1)=y$, and $P(k)=z$ for any integer l satisfying $r \leq l \leq k-r-1$. In this paper, we aim to show that the n-dimensional crossed cube is Hamiltonian $\left(\left\lceil\frac{n+1}{2}\right\rceil+1\right)-$ panconnected for $n \geq 4$. The lower bound $\left(\left\lceil\frac{n+1}{2}\right\rceil+1\right)$ on the path length is sharp, which is the smallest that can be achieved between two arbitrary vertices with dilation 1 .

The remainder of this paper is structured as follows. In Section 2, we introduce the definition and topological properties of the crossed cube. The main theorem and its proof are described in Section 3. Finally, some concluding remarks are given in Section 4.

2. The crossed cube and its properties

The n-dimensional crossed cube, denoted by $C Q_{n}$, has 2^{n} vertices, each of which corresponds to an n-bit binary string. To define the crossed cube, we first introduce an additional concept, "pair-related".

Definition 1 [11]. Two 2-bit binary strings $\mathbf{x}=x_{2} x_{1}$ and $\mathbf{y}=y_{2} y_{1}$ are pair-related, denoted by $\mathbf{x} \sim \mathbf{y}$, if and only if $(\mathbf{x}, \mathbf{y}) \in\{(00$, $00),(10,10),(01,11),(11,01)\}$.

The formal definition of $C Q_{n}$ is given below, and Fig. A. 1 depicts $C Q_{3}$ and $C Q_{4}$.
Definition 2 [11]. The n-dimensional crossed cube $C Q_{n}$ is recursively constructed as follows:
(i) $C Q_{1}$ is a complete graph with vertex set $\{0,1\}$.
(ii) $C Q_{2}$ is isomorphic to a C_{4} with vertex set $\{\mathbf{u}=00, \mathbf{v}=01, \mathbf{x}=10, \mathbf{y}=11\}$ and edge set $\{\mathbf{u v}, \mathbf{u x}, \mathbf{v y}, \mathbf{x y}\}$.
(iii) For $n \geq 3$, let $C Q_{n-1}^{0}$ and $C Q_{n-1}^{1}$ denote two copies of $C Q_{n-1}$ with $V\left(C Q_{n-1}^{0}\right)=\left\{0 u_{n-1} u_{n-2} \ldots u_{1} \mid\right.$ $u_{i}=0$ or 1 for $\left.1 \leq i \leq n-1\right\}$ and $V\left(C Q_{n-1}^{1}\right)=\left\{1 u_{n-1} u_{n-2} \ldots u_{1} \mid u_{i}=0\right.$ or 1 for $\left.1 \leq i \leq n-1\right\}$. Then, $C Q_{n}$ is formed by connecting $C Q_{n-1}^{0}$ and $C Q_{n-1}^{1}$ with 2^{n-1} edges so that a vertex $\mathbf{u}=0 u_{n-1} u_{n-2} \ldots u_{1}$ of $C Q_{n-1}^{0}$ is adjacent to a vertex $\mathbf{v}=1 v_{n-1} v_{n-2} \ldots v_{1}$ of $C Q_{n-1}^{1}$ if and only if (1) $u_{n-1}=v_{n-1}$ if n is even, and (2) $u_{2 i} u_{2 i-1} \sim v_{2 i} v_{2 i-1}$ for all $i, 1 \leq i \leq\left\lfloor\frac{n-1}{2}\right\rfloor$.
For the sake of convenience, the recursive construction of $C Q_{n}$ is denoted by $C Q_{n} \cong C Q_{n-1}^{0} \otimes C Q_{n-1}^{1}$. In general, let $C Q_{n-|\mathbf{x}|}^{\mathbf{x}}$ be the subgraph of $C Q_{n}$ induced by the set of vertices with the prefix \mathbf{x}, where \mathbf{x} is any k-bit binary string with $|\mathbf{x}|=k<n$.

https://daneshyari.com/en/article/8901011

Download Persian Version:

https://daneshyari.com/article/8901011

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: tlkung@asia.edu.tw (T.-L. Kung).

