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a b s t r a c t 

We present an efficient greedy algorithm for constructing sparse radial basis function (RBF) 

approximations with spatially variable shape parameters. The central idea is to incremen- 

tally construct a sparse approximation by greedily selecting a subset of basis functions 

from a parameterized dictionary consisting of RBFs centered at all of the training points. 

An incremental thin QR update scheme based on the Gram–Schmidt process with re- 

orthogonalization is employed to efficiently update the weights of the sparse RBF approx- 

imation at each iteration. In addition, the shape parameter of the basis function chosen at 

each iteration is tuned by minimizing the � 2 -norm of the training residual, while an ap- 

proximate leave-one-out error metric is used as the dominant stopping criterion. Numer- 

ical studies are presented for a range of test functions to demonstrate that the proposed 

algorithm enables the efficient construction of RBF approximations with spatially variable 

shape parameters. It is shown that, compared to a classical RBF model with a single tun- 

able shape parameter and Gaussian process models with an anisotropic Gaussian covari- 

ance function, the proposed algorithm can provide significant improvements in accuracy, 

cost, and sparsity, particularly for high-dimensional datasets. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

The problem of constructing an approximation model using a set of scattered observational data arises in many ap- 

plication areas, including machine learning [1,2] , forecasting and control of dynamical systems [3] , numerical methods for 

partial differential equations [4,5] , design optimization [6,7] , inverse problems [8] , stochastic modeling [9] and computer 

graphics [10] . Approximation models constructed using an observational or training dataset are also commonly referred to 

in the literature as surrogate models, emulators, metamodels, or interpolants. The field of engineering design optimization 

in particular has benefited greatly from approximation models and motivates many of the new research directions [11] . 

The task of constructing a surrogate/metamodel/emulator can be viewed as approximation through “learning” – using an 

available dataset to “teach” a model how to predict output values for various input values by tuning model-specific param- 

eters. A wide range of numerical methods can be found in the literature for modeling input–output datasets, for example, 

radial basis functions [12] , Gaussian process models [13] , support vector machines [1] and neural networks [2] . Research in 

the field is mostly concerned with developing modeling techniques that can scale well to large, high-dimensional datasets 
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and/or improve the generalization ability of the approximation [14] ; see, for example, [15] for a comparative review of 

various techniques. 

Many of the popular nonparametric approximation techniques involve the use of expansions in radial basis functions 

(RBFs); see, for example, [1,2,13,16] . The use of RBF expansions can be theoretically justified by the representer theorem 

in approximation theory [17] . RBF models are widely used in practical applications since they can be used in any arbi- 

trary space dimension, work for scattered datasets, and allow the construction of interpolants with a specified degree of 

smoothness [18] . Hardy [19] provided a detailed discussion of RBFs used for models in fields such as geophysics and signal 

processing, while Poggio and Girosi [20] presented the relationship between RBF models and regularization networks in the 

field of statistical learning theory. Even though RBF models have a number of attractive features, this approach often results 

in large-scale ill-conditioned linear systems that can be difficult to solve efficiently. This has motivated the development 

of numerical schemes for tackling the ill-conditioning issue and reducing the computational complexity associated with 

large-scale datasets [10,18] . 

The present work is concerned with the development of efficient numerical schemes for constructing RBF models of 

moderate to large-scale datasets such as those arising from design of computer experiments. More specifically, we propose 

a sequential greedy algorithm for efficiently constructing RBF approximations with spatially variable shape parameters. The 

idea of using greedy algorithms [21] to improve the efficiency of RBF approximation is not new and has been successfully 

applied to speedup RBF based methods for function approximation and pattern recognition; see, for example, [22–24] . 

The orthogonal matching pursuit (OMP) algorithm [25] approximated functions recursively using a dictionary of wavelets 

and later Natarajan [26] improved on OMP by introducing order recursion (ORMP). Floater and Iske [27] applied a greedy 

algorithm to the problem of generating evenly distributed subsets of scattered data. Greedy algorithms have also been 

applied to RBF collocation methods for partial differential equations [28,29] . 

The proposed greedy algorithm is an incremental forward greedy strategy wherein a new basis function is appended to 

the RBF approximation at each iteration. A key difference between the proposed greedy algorithm and those found in the 

literature lies in the fact that we work with a parameterized dictionary of basis functions since our goal is to construct an 

RBF expansion with spatially variable shape parameters. This approach provides a number of significant advantages over 

existing greedy algorithms for RBF approximation. Firstly, this feature allows significant improvements in computational 

efficiency since k -fold cross-validation tests involving repeated applications of the algorithm to partitions of the training 

dataset are no longer needed to tune the shape parameters. Secondly, since we use a separate shape parameter for each 

basis function, our approach provides exceptional modeling flexibility and is better able to approximate unstructured 

datasets. A similar idea was used in the greedy algorithm of Schaback and Wendland [22] , wherein a sequence of RBF 

models are constructed via repeated residual fitting in an inner–outer loop and each model in the sequence is permitted to 

use a different value of the shape parameter. This approach, while exceptionally efficient, suffers from slow training error 

convergence. Another distinguishing feature of the proposed algorithm is the use of an incremental thin QR factorization 

to update the RBF approximation. This strategy ensures numerical stability while providing significant reductions in 

computational complexity and memory requirements compared to greedy algorithms that require the full Gram matrix to 

be computed a priori and stored [26,30] . Additional benefits of the thin QR factorization update scheme include the ability 

to efficiently compute the weights of all the basis functions selected so far at each iteration and the reciprocal condition 

number of the coefficient matrix. 

The remainder of this paper is organized as follows. In the next section, a more detailed discussion of the motivation 

behind the proposed algorithm is provided. This includes background information on classical RBF approximations and 

their various drawbacks. The proposed algorithm is then presented in Section 3 to address these drawbacks and highlight 

a number of additional benefits. Numerical studies are presented in Section 4 and the main conclusions are highlighted in 

Section 5 . 

2. Classical RBF approximation 

Function approximation problems begin with a dataset of m observations X = { x 1 , . . . , x m 

} ⊂ � and their associated real 

function values or experiment results y i , i = 1 , . . . , m . Typically � is a bounded domain in R 

n , while the output values are 

usually a result of evaluating a computationally-expensive function f (x ) : R 

n → R or conducting a costly experiment. An 

algorithm is then responsible for constructing ˆ f – a cheap approximation of f – which can be used to predict y at any new 

x as ˆ y = 

ˆ f (x ) . 

An RBF interpolation model in terms of positive definite basis functions (also known as Mercer kernels [1] ) can be 

written in the form 

ˆ y (x ) = 

m ∑ 

i =1 

αi φi (x ) , (1) 

where φi (x ) : R 

n → R is an RBF, and the undetermined weights α = { α1 , α2 , . . . , αm 

} T ∈ R 

m can be calculated by solving 

the following linear algebraic system of equations 

K α = y , (2) 



Download English Version:

https://daneshyari.com/en/article/8901015

Download Persian Version:

https://daneshyari.com/article/8901015

Daneshyari.com

https://daneshyari.com/en/article/8901015
https://daneshyari.com/article/8901015
https://daneshyari.com

