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In this paper, a ratio-dependent predator-prey model with cross-diffusion is studied. By 

the linear stability analysis, the necessary conditions for the occurrence of Turing insta- 

bility are obtained. Moreover, the amplitude equations for the excited modes are gained 

by means of weakly nonlinear analysis. Numerical simulations are presented to verify the 

theoretical results and show that the cross-diffusion plays an important role in the pattern 

formation. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Since the Lotka–Volterra predator-prey model was proposed by Lotka [1] and Volterra [2] independently, many predator- 

prey models have been proposed by the researchers to describe the predator-prey interactions in the real world. Since 

the importance of the predator-prey model, the research on its dynamics has one of the most challenging areas of the 

population ecology and many theoretical results have been obtained in the past decades. The following ratio-dependent 

predator-prey system { 

dN 
dt 

= rN(1 − N 
K 
) − αNP 

P+ αβN 
, 

dP 
dt 

= 

ηαNP 
P+ αβN 

− γ P, 
(1) 

was introduced by Arditi and Ginzburg [3] . Here N and P stand for the prey and predator densities, respectively. r is the 

prey intrinsic growth rate, K is the environmental carrying capacity, α is the predator’s attack rate, β is the handling time, 

η accounts for the efficiency of biomass conversion from the predation and γ is the predator’s per-capita death rate. For a 

detailed explanation of (1) , please refer to [3,4] and the explanation therein. 

On the other hand, reaction-diffusion systems arising in a wide range of fields, including Biology, Chemistry, Physics and 

Ecology, have been widely used to study the mechanism of pattern formation [5–20] . These researches have shown that a 

spatial dispersion plays an important role in the pattern formation. Introducing the spatial dispersion into (1) , Wang et al. 

[10] and Song and Zou [4] investigated the following diffusive ratio-dependent predator-prey system { 

∂N(x,t) 
∂t 

= rN(x, t)(1 − N(x,t) 
K 

) − αN(x,t) P(x,t) 
P(x,t)+ αβN(x,t) 

+ d 11 N xx (x, t) , 

∂P(x,t) 
∂t 

= 

ηαN(x,t) P(x,t) 
P(x,t)+ αβN(x,t) 

− γ P (x, t) + d 22 P xx (x, t) , 
(2) 
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where d 11 ≥ 0 and d 22 ≥ 0 are the self-diffusion coefficients for the prey and predator, respectively. 

Introducing the dimensionless variables 

u = 

αβ

ηK 

N, v = 

αβ

η2 K 

P, ̂ t = 

η

β
t, ̂ x = 

√ 

η

β
x, 

and then dropping the hats for the simplicity of notations, system (2) can be transformed to {
∂u 
∂t 

= au (1 − u 
b 
) − bu v 

bu + v + d 11 u xx , 

∂v 
∂t 

= ( bu 
bu + v − c) v + d 22 v xx , 

(3) 

where a = 

rβ
η , b = 

αβ
η , c = 

γβ
η . And the parameters a , b and c are all positive. 

For system (3) , Wang et al. [10] obtained the condition of Hopf, Turing and wave bifurcation and showed that the 

spatially extended model had more complex dynamics patterns (stripe or spot or coexistence of both) by numerical sim- 

ulations. Song and Zou [4] have also studied the stability of the positive constant equilibrium, Turing instability, Hopf and 

steady state bifurcations. In addition, many researchers have also studied similar systems to (3) . For instance, Banerjee and 

Abbas [21] considered the global bifurcation for a ratio-dependent predator-prey model with death rate for the predator at 

first, then by incorporating diffusion terms, the varieties of stationary and non-stationary spatial patterns were investigated. 

Liu [22] presented a diffusive predator-prey model with ratio-dependent functional response, and found that predation rate 

played an important role in pattern formation. The mathematical analysis and numerical simulations showed that transition 

from stationary patterns to non-stationary patterns as long as the predation rate varied. Camara et al. [23] analyzed the 

spatial pattern formation of a diffusive predator-prey system with ratio-dependent functional response, they determined 

the appropriate condition of Turing instability around the interior equilibrium point. The self-replication pattern formation 

in the spatial-temporal prey-predator model with ratio-dependent functional response were reported by Banerjee [24] . 

Most of the above researchers were interested in the Turing instability and pattern caused by self-diffusion. However, 

both experimental and theoretical studies also show the effect of the cross-diffusion on the pattern formation. For instance, 

the experiments have revealed that cross-diffusion coefficients in the BZ-AOT system are quite significant [25,26] . Peng 

and Zhang [27] have shown that cross-diffusion can also result in pattern formation for a predator-prey system with Allee 

effect. Gambino et al. [28] have investigated the complex dynamics originated by a cross-diffusion-induced subharmonic 

destabilization of the fundamental subcritical Turing mode in a predator-prey reaction–diffusion system. In this paper, we 

are interested in the effect of the cross-diffusion on system (3) , i.e., we consider the following system {
∂u 
∂t 

= au (1 − u 
b 
) − bu v 

bu + v + d 11 ∇ 

2 u + d 12 ∇ 

2 v , (x, y ) ∈ �, t > 0 , 

∂v 
∂t 

= ( bu 
bu + v − c) v + d 21 ∇ 

2 u + d 22 ∇ 

2 v , (x, y ) ∈ �, t > 0 , 
(4) 

where � is the bounded domain in R 2 , with a smooth boundary ∂�, d 12 ( d 21 ) is the cross-diffusion coefficient, which 

denotes that the influence of the predator (prey) density to the prey (predator) density. When d 12 > 0, the prey is repelled 

from the predator, and when d 12 < 0, the prey is attracted. Meanwhile, d 21 has the same meaning with the role of the prey 

and predator switched. In this paper, we always assume that d 12 > 0 and d 21 > 0. 

For system (4) , we use the following initial conditions 

u (x, y, 0) = ϕ(x, y ) , v (x, y, 0) = ψ(x, y ) ≥ 0 , x, y ∈ �, 

and the Neumman boundary conditions 

∂u 

∂ n 

= 0 , 
∂v 
∂ n 

= 0 , 

where n is the external unit normal vector of the boundary ∂�. 

In this paper, we investigate the stability of the positive equilibrium, cross-diffusion-induced instability and spatial 

patterns for the predator-prey model (4) . Compared with the works of [4] and [10] , we are more interested in the effect 

of cross-diffusion term d 21 . Theoretical analysis and numerical simulation show that the cross-diffusion leads to the 

appearance of pattern. This paper can be considered as the generalization of partial results in [4] and [10] . 

As for the study of biological pattern formation, we would also like to mention that models of cyclic dominance are 

traditionally employed to study biodiversity in biologically inspired settings and cyclic dominance is also at the heart of 

predator-prey interactions [29] . The pattern formation, spatiotemporal dynamics and important role of zealots in models of 

cyclic dominance have been widely studied in [29–32] . 

The rest of this paper is organized as follows. In Section 2 , we investigate the stability and Turing instability of the 

positive equilibrium. The amplitude equations are derived by means of weakly nonlinear analysis in Section 3 . In Section 4 , 

numerical simulations show that the different types of patterns appear with the change of cross-diffusion coefficient d 21 . 

Finally, we give a brief conclusion in Section 5 . 
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