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a b s t r a c t 

Stability of numerical solutions to stochastic differential equations (SDEs) has received an 

increasing attention from researchers in applied mathematics and engineering areas, but 

there has been so far little work on the stability analysis of numerical solutions to highly 

nonlinear stochastic functional differential equations (SFDEs). The aim of this paper is to 

study the almost sure exponential stability of the backward Euler scheme for highly non- 

linear SFDEs. Firstly, a stability criterion is established for the almost sure exponential sta- 

bility of the underlying nonlinear SFDE under an extended polynomial growth condition, 

the global existence of the solutions of the underlying equation is simultaneously shown 

with a new technique, the Fatou’s Lemma. Secondly, the almost sure exponential stability 

of the backward Euler scheme is investigated by contrast. The stability criterion shows that 

the numerical scheme preserves the almost sure exponential stability of the analytic so- 

lution under the same growth condition, which improves some related result in literature 

as a corollary by way. To describe the scheme conveniently, a concept, the interpolation 

segment, is formally proposed in the paper, which provides a way for constructing a dis- 

cretized approximation to a continuous function applied in the scheme. To achieve the re- 

quired results, the classical nonnegative semi-martingale convergence theorem is reformed 

to a practical version, namely the so called practical nonnegative semi-martingale bound- 

edness lemma in the paper. At the end of the paper, a numerical example is proposed to 

illustrate the adaption of the growth condition assumed in the paper. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Stochastic modeling plays an important role in describing the dynamical systems in many branches of science and in- 

dustries. Since the introduction of Itô formula and related stochastic analysis tools, SDEs have been used successfully to 

model such systems in many application fields as those in biology, epidemiology, mechanics, control theory and so on. 

Combined with the time delay issue, the stability of SFDEs, including stochastic delay differential equations (SDDEs), has 

received lots of attentions over past twenty years and many important results have been established by many researchers 

(see e.g. [1–5] etc). Generally, SFDEs admit no explicit solution. Therefore, it seems to be interesting and necessary to study 

the numerical solutions of SFDEs. However, so far, little is known about the stability of numerical solutions about SFDEs as 
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Fig. 1. Backward Euler–Maruyama numerical simulation. 

yet, not to mention the highly nonlinear SFDEs due to the technical difficulties for analysis. Recently, Miloševi ́c [6] studied 

the almost sure asymptotically exponential stability of the Euler–Maruyama solution (EM) to some highly nonlinear neutral 

stochastic differential equations with time-dependent delay under the Khasminskii-type conditions. Wu et al. [7] shew that 

EM methods can reproduce the moment exponential stability of the exact solution to SFDEs under the linear growth condi- 

tion. What excites us is that in [8] Zhou with his coauthors investigated almost sure exponential stability of the backward 

Euler–Maruyama discretization (BEM) for highly nonlinear stochastic functional differential equations under a simple class 

of polynomial growth condition. The present work is a continuation of the literature [8] , which extends the polynomial 

growth condition on the drift and diffusive coefficients in the model so as to adapts more nonlinear SFDEs. 

Under the extended polynomial growth condition for our nonlinear model, in which both the drift and diffusive coef- 

ficients may defy the widely used linear growth condition, this paper will address the following sequent questions: if the 

exact solution of the model is almost sure exponentially stable, may the numerical schemes preserve the same stability 

property? If so, which method works well for this purpose? Is it ok for the Euler–Maruyama method? Actually, Wu and 

Mao had concluded in [9] that the Euler–Maruyama method cannot preserve the stability in general for nonlinear SDDEs, 

let alone the nonlinear SFDEs, while [9] confirmed that the backward Euler–Maruyama scheme can reproduce the stability of 

the analytic solutions under the same conditions generally. We cannot help thinking that can the backward Euler–Maruyama 

scheme preserve almost sure exponential stability for nonlinear SFDEs under the extended polynomial growth condition? In 

the paper, we shall say yes to this question. As a special case, we will improve some criterion in literature by way. 

It is worth pointing out that the used techniques in literature may not adapt to our model under the nonlinear assump- 

tion. Actually, in some literature, the almost sure exponential stability is actually derived from the moment stability by a 

combined application of the Chebyshev inequality and the Borel–Cantelli lemma. For example, the authors of [11,12] proved 

that the moment exponential stability implies almost sure exponential stability under the linear growth by this technique, 

which is obviously unavailable for us under the nonlinear assumption; Higham with his coauthors developed another tech- 

nique, that is the law of large numbers, in [11,13] to study the numerical sequence and obtained their almost sure stability 

criterion. Likewise, it is difficult for us to verify the condition for the application of this law under our nonlinear assumption 

due to the nonlinearity and hysteresis for the dynamics in the model. Thus, we had to turn to another way, namely that 

by the nonnegative semi-martingale convergence theorem, see [10] . Of course, this is also a typical way for us to achieve 

almost sure exponential stability. In principle, we need only to verify the M 

2 -integrability condition for following this way, 

c.f.[1] etc, while this kind of condition is very easy to satisfy under even the highly nonlinear condition. To carry out the 

required results conveniently, the classical nonnegative semi-martingale convergence theorem is reformed to a practical ver- 

sion, namely the so called practical nonnegative semi-martingale boundedness lemma in the paper as preliminary. Besides, 

we will also discuss the global existence of the solutions of the underlying equation as a base for our stability issue as 

[8] did. We complete this by a new technique, the Fatou’s Lamma for the first time in literature. 

The rest of the paper is arranged as follows. In Section 2 , we introduce some notations, assumptions and the preliminary 

lemmas. In Section 3 , we study the stability of the analytic solution of the underlying SFDEs. In Section 4 , we investigate the 

almost sure exponential stability of the backward Euler scheme. In Section 5 , we provide a numerical example to illustrate 

the application of the obtained results. 

2. Notations, model, assumptions and lemmas 

Throughout this paper, we use the following notations. Let (�, F , P ) be a complete probability space with a filtration 

{F t } t≥0 satisfying the usual conditions, that is, it is right continuous and increasing while F 0 contains all P-null sets. 
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