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a b s t r a c t 

We study the burst ratio in the queueing system with finite buffer and batch arrivals. The 

study is motivated by computer networking, in which packet losses occur due to queue- 

ing mechanisms and buffer overflows. First, we derive the formula for the burst ratio in 

the case of compound Poisson arrivals, general distribution of the service time and gen- 

eral distribution of the batch size. Then, we study its asymptotic behavior, as the buffer 

size grows to infinity. Using the obtained analytical solutions, we present several numeri- 

cal examples with various batch size distributions, service time distributions, buffer sizes 

and system loads. Finally, we compare the computed burst ratios with values obtained in 

simulations. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Roughly speaking, the burst ratio, [1] , is a characteristic of the packet loss process, informing us about the inclination of 

losses to occur in long series. It is defined as the average length of series of packets lost one after another, divided by the 

average length of series of packets lost in the Bernoulli process (i.e. with independent losses). 

Formally speaking, consider a sequence of binary random variables Y 1 , Y 2 , Y 3 , . . . , perhaps mutually dependent, each one 

assuming values 0 and 1 with probabilities L and 1 − L, respectively. In networking, variables Y 1 , Y 2 , Y 3 , . . . symbolize con- 

secutive packets passing through a network node, where a packet transmitted correctly to the next node is marked by 1, 

while a packet lost at the node—by 0. Obviously, parameter L is the loss probability (or the long-run packet loss ratio). 

Let G denote the average length of series of consecutive zeroes in sequence Y 1 , Y 2 , Y 3 , . . . . Note that, even for a small value 

of L (e.g. 0.01), the value of G can be arbitrary large (e.g. 500), due to possible strong dependencies between variables Y i . 

On the other hand, consider a Bernoulli sequence Z 1 , Z 2 , Z 3 , . . . , i.e. a sequence of binary random variables, with proba- 

bility of 0 equal to L in each step, and with all variables Z 1 , Z 2 , Z 3 , . . . being mutually independent. Let K denote the average 

length of series of consecutive zeroes in sequence Z 1 , Z 2 , Z 3 , . . . . 

The burst ratio, B , of sequence Y 1 , Y 2 , Y 3 , . . . is defined as: 

B = 

G 

K 

. (1) 

Of course, the same packet loss probability is assumed in both the nominator and denominator, whether the average 

length of consecutive zeroes has been calculated from measurements or from a model. 
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A trivial verification shows that 

K = 

1 

1 − L 
. 

Thus, we can rewrite (1) as: 

B = G (1 − L ) . (2) 

Naturally, the value of B greater than 1 indicates that the losses have a higher tendency to occur in long series, than in 

the case of random, independent loss. The value of B smaller than 1 indicates that the losses are more scattered, than in 

the case of random loss. 

In computer networking, it is strongly preferred to have small burst ratios. This is due to the fact that long series of con- 

secutive packet losses deteriorate significantly the quality of real-time multimedia transmissions, e.g. the Internet telephony, 

Internet television, etc. Namely, it is far better if the sequence of delivered-lost packets looks like this: 

111101111011111011110111110111011111101111 

rather than like this: 

1111111111110 0 0111111111110 0 0 0111111111111 

even though in the former sequence there is exactly the same number of losses, as in the latter. (For a deeper discussion 

of the influence of the burst ratio on the quality of the digitalized voice transmissions, we refer the reader to [2,3] . In 

particular, formula (7–29) of [3] present directly the impairment of the voice quality as a function of B. ) 

Now, one of the most important reasons of packet loss in networking, especially in TCP/IP networks, is queueing of 

packets in network nodes (routers). Namely, the incoming packets are stored in a buffer, before transmission via the output 

interface. If this buffer is full, the arriving packets are deleted. In real networks, it happens all the time. 

For this reason, it is natural to study the burst ratio in the finite-buffer queueing model, which mimics precisely the 

actual reason of losses—buffer overflow events. This is what we do in this paper. 

In the study, we assume general distribution of the service time. This makes the formulas more complicated, but allows 

for precise modeling of the packet transmission time. In a TCP/IP network, the packet sizes may vary according to some 

distribution. This distribution translates then to the distribution of the service (transmission) time. 

To make the model even more accurate, we enable the possibility of arriving of packets not only as single units, but also 

in groups (batches). This is motivated by the fact that a significant fraction of traffic in contemporary networks is carried 

using the TCP protocol. It is well known that hosts exploiting the TCP protocol have the tendency to inject the packets into 

the network in groups. This is caused by the design of the protocol, which allows sending a whole group of W packets, 

before receiving a confirmation of the delivery of the previously sent packets. (More information on the batch structure of 

the TCP traffic and its modeling can be found e.g. in [4] .) 

It is intuitively clear that the batch structure of the traffic may have a deep impact on the burst ratio. Namely, when 

the buffer is full and a group of packets arrive, the whole group is lost (instead of a single packet, as it would happen in 

the case of the single-arrival traffic). Therefore, the value of G is typically much higher for the batch-arrival traffic. Using 

numerical examples, we will confirm this intuition in Section 6 . 

Summarizing, in this paper we study the burst ratio in the queueing system with finite buffer, in which losses of packets 

are caused by buffer overflows. To model the traffic, the batch Poisson process is used, with the distribution of the batch 

size in general form. Similarly, the service time distribution is general. 

In Section 2 , we characterize the previous work on the burst ratio. Then, Sections 3 and 4 present the main results of the 

paper. Namely, in Section 3 , the exact formula for the burst ratio, depending on the arrival rate, the batch size distribution, 

the service time distribution and the buffer size, is derived ( Theorem 1 ). In Section 4 , the limiting formula for the burst 

ratio, as the buffer size grows to infinity, is derived ( Theorem 2 ). It can be used often as a simple approximation of the 

burst ratio value, even for relatively small buffers. In Section 5 , using numerical examples, we demonstrate the impact of 

the buffer size, the average batch size, the variance of the batch size, the service time distribution, and the system load, on 

the burst ratio. We present simulation results, obtained in various scenarios, each confirming the accuracy of the analytical 

results. We also show the simplified formulas for the special case—the M / M /1/ N queue. Finally, conclusions are presented in 

Section 6 . 

2. Previous work 

We are not aware of any published work on the burst ratio in queueing models of any type. 

The simplest and most important characteristic of the loss process is the loss probability (loss ratio), L . Several papers 

have been published to date on its actual measurements in computer networks (see, e.g. [5–9] ), as well as its analytical 

computations based on queueing models (see, e.g. [10–12] ). The analytical papers differ in assumptions about the arrival 

process. In [10] , the Poisson process is used; in [11] , the Markov-modulated Poisson process is exploited, while in [12] , the 

batch Markovian arrival process. 

As for the burst ratio, the previous work on this characteristic was based on modeling packet losses via some stochastic 

processes, which were not originated in queueing mechanisms. In most papers, Markov chain models of the loss process 
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