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a b s t r a c t 

Let G be a graph and A ( G ) the adjacency matrix of G . The polynomial π(G, x ) = per (xI −
A (G )) is called the permanental polynomial of G , and the permanental sum of G is the 

summation of the absolute values of the coefficients of π ( G , x ). In this paper, we investi- 

gate properties of permanental sum of a graph, prove recursive formulas to compute the 

permanental sum of a graph, and show that the ordering of graphs with respect to perma- 

nental sum. Furthermore, we determine the upper and lower bounds of permanental sum 

of unicyclic graphs, and the corresponding extremal unicyclic graphs are also determined. 

© 2018 Published by Elsevier Inc. 

1. Introduction 

The permanent of an n × n real matrix X = (x i j ) , with i, j ∈ { 1 , 2 , . . . , n } , is defined as 

per (X ) = 

∑ 

σ

n ∏ 

i =1 

x iσ (i ) , 

where the sum is taken over all permutations σ of { 1 , 2 , . . . , n } . Valiant [19] has shown that compute the permanent is 

#P-complete even when restricted to (0, 1)-matrices. 

Let G be a graph with n vertices and let A ( G ) be its adjacency matrix. The polynomial 

π(G, x ) = per (xI − A (G )) = 

n ∑ 

k =0 

b k x 
n −k (1) 

is called the permanental polynomial of G , where I is the n by n identity matrix. To emphasize the graph G , the coefficients 

are often written as b k ( G ), 0 ≤ k ≤ n . 

The properties of the coefficients b k ( G ) has been one problem that has attracted many researchers. A graph G is a Sachs 

graph if each of whose component is a single edge or a cycle. Given an integer k ≥ 0 and a graph G , let S k ( G ) denote the 

collection of all Sachs subgraphs H of G on k vertices, and let c ( H ) be the number of cycles in a graph H . Merris et al. 

[16] presented a Sachs type result concerning the coefficients of the permanental polynomial of G , as follows, 

b k (G ) = (−1) k 
∑ 

H∈ S k (G ) 

2 

c(H) , 0 ≤ k ≤ n. (2) 
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The permanental sum of graph G , denoted by PS ( G ), is the sum of the absolute values of all coefficients of π ( G , x ). By (2) , 

we have, 

P S(G ) = 

n ∑ 

k =0 

| b k (G ) | = 

n ∑ 

k =0 

∑ 

H∈ S k (G ) 

2 

c(H) . (3) 

Thus P S(G ) = 1 if G is an empty graph. 

In late 1970s, permanental polynomials of graphs was first introduced in mathematics and chemistry [2,11,16] . The stud- 

ies on the permanental polynomials have receiving a lot of attention from researchers in recent years. Cash [4,5] , Gutman 

[8] and Chen [6] studied the coefficients of the permanental polynomials of some chemical graphs, such as benzenoid hy- 

drocarbons, fullerenes, and so on. For more and additional information, see [1,3,7,13,14,17,22,23] and the references therein. 

The permanental sum of a graph was first considered by Tong [18] . In [21] , Xie et al. captured a labile fullerene C 50 ( D 5 h ). 

Tong computed all 271 fullerenes in C 50 . In his study, Tong found that the permanental sum of C 50 ( D 5 h ) achieves the mini- 

mum among all 271 fullerenes in C 50 . He pointed that the permanental sum would be closely related to stability of molec- 

ular graphs. Recently, Li et al. in [12] determined the extremal hexagonal chains with respect to permanental sum. Further- 

more, the permanental sum of a graph is also related to the Hosoya index, an important topological index of a graph. For 

an integer k ≥ 0, let m ( G , k ) denote the number of k -matchings of a graph G . The Hosoya index Z ( G ) of a graph G is defined 

to be the total number of matchings of G , that is 

Z(G ) = 

� n 2 � ∑ 

k =0 

m (G, k ) , (4) 

where n is the number of vertices of graph G . By (2), (3) and (4) , it is shown that the Hosoya index is an lower bound of 

the permanental sum of G . That is, 

Proposition 1.1. Let G be a graph. Then 

Z(G ) ≤ P S(G ) , where the equality holds i f and only i f G is a f orest. (5) 

In this paper, we investigate the properties of the permanental sum of a graph. Preliminaries are presented in Section 2 , 

and a number of recursive formulas of permanental sum are derived in Section 3 . In Section 4 , we prove the ordering of 

graphs with respect to their permanental sum. In Section 5 , we determine extremal unicyclic molecular graphs with respect 

to permanental sum. 

2. Preliminaries 

All graphs considered in this work are undirected, finite and simple graphs. For notation and terminology not defined 

here, see [15] . 

Let G be a graph with vertex set V ( G ) and edge set E ( G ). The order of G is the number of vertices of G , and G is called 

an empty graph if it is of zero order. The neighborhood of vertex v ∈ V (G ) , denoted by N G (v ) , is the set of vertices adjacent 

to v . The path, cycle, star and complete graph of order n are denoted by P n , C n , S n and K n , respectively. Let G ∪ H denote the 

union of two vertex disjoint graphs G and H . For any positive integer l , lG denotes the union of l disjoint copies of G . 

A unicyclic graph is a connected graph containing exactly one cycle. Denote by U n the set of all unicyclic graphs on n 

vertices. Let S + n be the graph obtained by adding a new edge to the star S n , and let D r,n −r be the graph obtained from the 

disjoint union of a cycle C r and a path P n −r by identifying one end of P n −r with one of the vertices of C r . By definitions, 

S + n , D n,n −r ∈ U n . 

The following are known on the Hosoya index Z ( G ) of graph G and m ( G , k ) the number of k -matchings of graph G . 

Lemma 2.1. (Wagner and Gutman [20] ) Suppose that G ∈ U n . Then Z(G ) ≥ 2 n − 2 , where equality holds if and only if G is 

isomorphic to S + n . 

Lemma 2.2. (Wagner and Gutman [20] ) Let P n be a path of order n. Then 

Z(P n ) = 

{ 

0 if n = 0 , 

1 if n = 1 , 

Z(P n −1 ) + Z(P n −2 ) if n ≥ 2 . 

Thus the sequence Z (P 0 ) , Z (P 1 ) , Z (P 2 ) , . . . is the sequence of Fibonacci numbers. 

Lemma 2.3. (Gutman and Polansky [9] ) Let G be a forest of order n. Then m ( G , k ) ≤ m ( P n , k ), where equality holds if and only if 

G 

∼= 

P n . 

It follows from (4) and Lemma 2.3 that Z ( G ) ≤ Z ( P n ). This, together with (5) , implies Lemma 2.4 below. 

Lemma 2.4. Let G be a forest of order n. Then PS ( G , k ) ≤ PS ( P n , k ), where equality holds if and only if G 

∼= 

P n . 

With the same arguments, we also obtain similar relationships for disjoint paths. 
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