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In this paper we study the duopoly model proposed by M. Kopel [26], where two firms 

compete “a la Cournot ” and the reaction curves have a higher degree of coupling in the 

sense that firms have to make their choices simultaneously. We will make a descriptive 

analysis of the two-dimensional model, making an approach through particular situations. 

On the other hand, when the firms are homogeneous a one-dimensional invariant subset 

is present in the model. We will give an analytical proof of the existence of a (topological) 

chaotic behavior for a wide range of parameter values and we will study when chaotic 

synchronization and collusion occur. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

M. Kopel introduced in [18] a duopoly model in which two firms compete “a la Cournot ”. This model has been widely 

studied from different points of view in several papers [2,16,18,25] . Thus, in [16] the stability of the fixed points is analyzed 

and in [25] the topological horseshoe theory is used to detect topological chaos. 

We will use both theoretical and numerical techniques to give a detailed overview of the model. The dynamics is ap- 

proached using different techniques. Although the model is two-dimensional, the knowledge and study of some particular 

cases, for example when λ = 1 , can shed light on the global dynamics of the model. In particular, we study the invariant 

set � = { (x, y ) ∈ R 

2 : x = y } , which can be deeply analyzed because it is reduced to a one-dimensional map, and we may 

use different well-known facts to describe the model. We also analyze when firms synchronize to �, and when such 

synchronization is chaotic. For the general two-dimensional model the attractors, their number and layout, are considered 

in a descriptive way and some related properties are given. A remarkable feature is that this model can be derived from 

different economic assum ptions, see [18] . This is a particularly important fact from the point of view of benefits since 

the results change depending on the economic settings, the prices and demand conditions. We consider both alternative 

options when we study the average profit and the market situation along the time. The average profit along the chaotic 

orbits is compared to the profits obtained in the stationary points for both firms. In particular, we study the cases in which 

both firms are interested in making agreements in order to improve their profits and collusion is the best option for both 

firms. 
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2. Analytic description of the model 

In this section we present the equations of the model. The model of Kopel uses cost functions with externalities 

depending not only by the own firm’s production but also on the production of the other firm. These externalities turn out 

in a model with non-monotonic reaction curves for both firms, in this particular case, the quadratic map l μ(x ) = μx (1 − x ) . 

Two firms X and Y , plan their productions, namely x t , y t , at time t following the system of difference equations: 

x t+1 = (1 − λ1 ) x t + λ1 μ1 y t (1 − y t ) 

y t+1 = (1 − λ2 ) y t + λ2 μ2 x t (1 − x t ) , (1) 

where λi ∈ [0, 1] and μi > 0 for i = 1 , 2 . The positive parameters μi measure the intensity of the effect that one firm’s actions 

has on the other firm (the extent of the externality). Firms choose a weighted average between the previous production 

and the computed one with weights 1 − λi and λi , respectively. When λ = 1 , the strategy is played in a sequential process, 

in which each firm decides its production observing the production of the another firm, whereas 0 < λ< 1 firms make 

their choices according an adaptive process in which x t+1 ( y t+1 ) is a weighted combination between its previous output, 

x t ( y t ) and l μ1 
(y t ) ( l μ2 

(x t ) ). In this process the parameters λ1 and λ2 can be considered as measures of the speed of the 

adjustment of each firm. Since productions cannot be negative, we prefer to rewrite the model as 

x t+1 = max { 0 , (1 − λ1 ) x t + λ1 μ1 y t (1 − y t ) } 
y t+1 = max { 0 , (1 − λ2 ) y t + λ2 μ2 x t (1 − x t ) } , (2) 

The two-dimensional map 

R λ1 ,λ2 ,μ1 ,μ2 
(x, y ) := ( max { 0 , (1 − λ1 ) x + λ1 μ1 y (1 − y ) } , max { 0 , (1 − λ2 ) y + λ2 μ2 x (1 − x ) } ) , 

describes the simultaneous choices of both firms and the sequence ( x t , y t ) is given by 

(x t , y t ) := R 

t 
λ1 ,λ2 ,μ1 ,μ2 

(x 0 , y 0 ) = 

t times ︷ ︸︸ ︷ 
R λ1 ,λ2 ,μ1 ,μ2 

◦ · · · ◦ R λ1 ,λ2 ,μ1 ,μ2 
(x 0 , y 0 ) , 

where ( x t , y t ) denotes the t -iterated point of the orbit with initial condition ( x 0 , y 0 ). 

In general, authors (see [2,16,18,25] ) consider a restricted model in which λ1 = λ2 = λ, μ1 = μ2 = μ. The two restric- 

tions according to which λ1 = λ2 = λ and μ1 = μ2 = μ define the condition for a symmetric duopoly model in which the 

strategic relationship between the output offers of the two firms is non-monotonic. For each firm the range of potential 

output offers put forward by its opponent is normalized in the interval [0, 1] and the optimal output reply belong to the 

interval [0 , μ4 ] . Thus, μ can be interpreted as an indicator of production capacity. The reaction map takes the form 

R λ,μ(x, y ) := ( max { 0 , (1 − λ) x + λμy (1 − y ) } , max { 0 , (1 − λ) y + λμx (1 − x ) } ) , (3) 

and if 

f λ,μ(x, y ) = (1 − λ) x + λμ y (1 − y ) (4) 

the reaction map (3) can be rewritten as 

R λ,μ(x, y ) := ( max { 0 , f λ,μ(x, y ) } , max { 0 , f λ,μ(y, x ) } ) . (5) 

The parametric space is defined as 

� = { (λ, μ) ∈ R 

2 : λ ∈ [0 , 1] and μ > 0 } . (6) 

In the general case, algebraic programs do not work properly to give results, but also the restricted model presents a 

very rich dynamics by itself. Observe that now the set � = { (x, x ) : x ≥ 0 } is invariant, that is R λ, μ( x , x ) ∈ � for each 

( λ, μ) ∈ �. The main consequence of this fact is that we can study the dynamics restricted to � reducing the equations 

to a one-dimensional model, where dynamics can be studied using a wider variety of techniques. In fact, we will study 

the restricted model as well, but we will make some approaches to the general one by computing the topological entropy 

with prescribed accuracy in some particular cases. It means that we can prove the existence of topological chaos not only 

simple numerical simulations but making an estimation up to prescribed error. It is worth to mention that the existence of 

topological chaos is not always physically observable using simulations. 

3. The invariant diagonal set: one-dimensional dynamics 

This section is devoted to study the dynamics when both firms (which are equal in terms of plan their choices) produce 

the same quantities at the beginning. The invariant set � = { (x, x ) : x ≥ 0 } can be seen as an interval of the real line and 

the dynamics can be studied in terms of a one-dimensional map. Observe that � is included in the two-dimensional phase 

space and we are interested in checking whether the dynamics outside � converges to the dynamics on �, with a special 

emphasis in the existence of chaotic synchronization. The one-dimensional dynamics is given by the function 

f λ,μ(x, x ) = max { 0 , (1 − λ) x + λμx (1 − x ) } , 
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