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a b s t r a c t 

A class of third order singularly perturbed Boundary Value Problems (BVPs) for ordinary 

delay differential equations with discontinuous convection–diffusion coefficient and source 

term is considered in this paper. The existence and uniqueness of the solution has been 

proved. Further, a fitted finite difference method on Shishkin mesh is suggested to solve 

the problem. Numerical solution converges uniformly to the exact solution. The order of 

convergence of the numerical method presented here is of almost first order. Numerical 

results are provided to illustrate the theoretical results. 
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1. Introduction 

In this paper, we study the following third order singularly perturbed delay differential equations with discontinuous 

convection coefficient and source term: 

Find u ∈ Y = C 1 ( �) ∩ C 2 (�) ∩ C 3 (�∗) such that {
−εu 

′′′ (x ) + a (x ) u 

′′ (x ) + b(x ) u 

′ (x ) + c(x ) u (x ) + d(x ) u 

′ (x − 1) = f (x ) , x ∈ �∗, 
u (x ) = φ(x ) , x ∈ [ −1 , 0] , u 

′ (2) = l, φ ∈ C 1 [ −1 , 0] , 
(1.1) 

where 0 < ε � 1, a (x ) = 

{
a 1 (x ) , x ∈ [0 , 1] , 

a 2 (x ) , x ∈ (1 , 2] , 
f (x ) = 

{
f 1 (x ) , x ∈ [0 , 1] , 

f 2 (x ) , x ∈ (1 , 2] , 
a 1 (1 −) � = a 2 (1+) , f 1 (1 −) � = f 2 (1+) , a i (x ) ≥ αi > 

α + 2 > 3 , i = 1 , 2 , b ( x ) ≥β0 ≥ 0, γ 0 ≤ c ( x ) ≤γ ≤ 0, η0 ≤ d ( x ) ≤ 0, 2 α + 24 γ0 + 5 η0 > 0 and b , c , d are sufficiently smooth on 

�, a and f are sufficiently smooth and bounded on �∗, �∗ = �− ∪ �+ , �− = (0 , 1) , �+ = (1 , 2) , � = (0 , 2) . 

Existence, Oscillation and boundedness of the solution have been well studied in [1–5] and the reference therein for 

third order delay differential equations with smooth data. As far as our knowledge goes, existence of the solution for third 

order delay differential equations with non smooth data is not available in the literature. In this paper, we proved existence 

and uniqueness of the solution for problem (1.1) . 

It is well known that an efficient way of handling the above problem (1.1) from a numerical method perspective is 

employing a layer-adapted mesh, such as a Shishkin mesh or a Bakhvalov mesh. For the above problem, a layer adopted 

piecewise uniform Shishkin mesh is constructed and on this mesh a fitted finite difference method is suggested. Further, it 
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is proved that, the numerical solution is converges uniformly to the solution. One may refer [6–8] , for more details regarding 

to uniform convergence analysis for singular perturbation problems. Recently many authors have suggested some numeri- 

cal methods for second order singularly perturbed delay differential equations. For instance, Geng and Qian [9] proposed 

and analyzed modified reproducing kernel method for the problem of convection diffusion type with non vanishing delay. 

Whereas, the authors in [10] suggested exponentially fitted initial value technique for convection diffusion problem with 

vanishing delay. In [11] and [12] , the author suggested a fitted finite difference method for single and system of convection 

diffusion problem with discontinuous data, etc. Few authors have considered and suggested some uniformly valid numerical 

methods for singularly perturbed partial delay differential equations, to cite a few: [13–16] . For more details pertaining to 

the numerical methods for singularly perturbed delay differential equations, one may refer [9–16] and the references cited 

therein. 

The above BVP (1.1) can be written as, 

Find u = (u 1 , u 2 ) , u 1 ∈ Y 1 = C 0 ( ̄�) ∩ C 1 (0 , 2] and u 2 ∈ Y 2 = C 0 ( �) ∩ C 1 (�) ∩ C 2 (�∗) such that 

P 1 u (x ) := u 

′ 
1 (x ) − u 2 (x ) = 0 , x ∈ � ∪ { 2 } , (1.2) 

P 2 u (x ) := 

{
−εu 

′′ 
2 (x ) + a 1 (x ) u 

′ 
2 (x ) + b(x ) u 2 (x ) + c(x ) u 1 (x ) = f 1 (x ) − d(x ) φ′ (x − 1) , x ∈ �−, 

−εu 

′′ 
2 (x ) + a 2 (x ) u 

′ 
2 (x ) + b(x ) u 2 (x ) + c(x ) u 1 (x ) + d(x ) u 2 (x − 1) = f 2 (x ) , x ∈ �+ , 

(1.3) 

u 1 (0) = φ(0) , u 2 (0) = φ′ (0) , u 2 (1 −) = u 2 (1+) , u 

′ 
2 (1 −) = u 

′ 
2 (1+) , u 2 (2) = l, 

where u 2 (1 −) and u 2 (1+) denote the left and right limits of u 2 at x = 1 , respectively. 

The present paper is organized as follows. The existence of the solution of the problem stated in the present section is 

proved in the next section. A maximum principle for the DDE is established in Section 3 . Further a stability result is derived. 

Derivative estimate for the solution of the problems is derived in Section 4 . The present numerical method is described in 

Section 5 and an error estimate is derived in Section 6 . Section 7 presents numerical examples. The paper is concluded with 

discussion ( Section 8 ). 

2. Existence of solution 

In this section, we proved the existence of the solution of the problem stated above. 

Theorem 2.1. Problem (1.1) has a solution ū = (u 1 , u 2 ) , where u 1 ∈ C 0 ( ̄�) ∩ C 1 (� ∪ { 2 } ) and u 2 ∈ C 0 ( ̄�) ∩ C 1 (�) ∩ C 2 (�∗) . 

Proof. The proof is by construction. Let ȳ L = (y 1 L , y 2 L ) and ȳ R = (y 1 R , y 2 R ) be particular solutions of the following problems, 

respectively: { 

y ′ 1 L (x ) − y 2 L (x ) = 0 , x ∈ �−, 

−εy ′′ 2 L (x ) + a 1 (x ) y ′ 2 L (x ) + b(x ) y 2 L (x ) + c(x ) y 1 L (x ) = f 1 (x ) − d(x ) y 2 L (x − 1) , x ∈ �−, 

y 1 L (x ) = φ(x ) , y 2 L (x ) = φ′ (x ) , x ∈ [ −1 , 0] 
(2.1) 

and {
y ′ 1 R (x ) − y 2 R (x ) = 0 , x ∈ �+ , 
−εy ′′ 2 R (x ) + a 2 (x ) y ′ 2 R (x ) + b(x ) y 2 R (x ) + c(x ) y 1 R (x ) = f 2 (x ) − d(x ) y 2 L (x − 1) , x ∈ �+ . 

(2.2) 

Further, let φ̄1 = (φ11 , φ12 ) , φ̄2 = (φ21 , φ22 ) , φ̄3 = (φ31 , φ32 ) be the functions satisfy the following problems, respectively { 

φ′ 
11 (x ) − φ12 (x ) = 0 , x ∈ � ∪ { 2 } , 

−εφ′′ 
12 (x ) + a 1 (x ) φ′ 

12 (x ) + b(x ) φ12 (x ) + c(x ) φ11 (x ) + d(x ) φ12 (x − 1) = 0 , x ∈ �, 

φ11 (x ) = 0 , x ∈ [ −1 , 0] , φ12 (x ) = 0 , x ∈ [ −1 , 0] , φ12 (2) = 1 , 

(2.3) 

{ 

φ′ 
21 (x ) − φ22 (x ) = 0 , x ∈ � ∪ { 2 } , 

−εφ′′ 
22 (x ) + a 2 (x ) φ′ 

22 (x ) + b(x ) φ22 (x ) + c(x ) φ21 (x ) + d(x ) φ22 (x − 1) = 0 , x ∈ �, 

φ21 (x ) = 0 , x ∈ [ −1 , 0] , φ22 (x ) = 0 , x ∈ [ −1 , 0] , φ22 (2) = 1 , 

(2.4) 

{ 

φ′ 
31 (x ) − φ32 (x ) = 0 , x ∈ � ∪ { 2 } , 

−εφ′′ 
32 (x ) + a 2 (x ) φ′ 

32 (x ) + b(x ) φ32 (x ) + c(x ) φ31 (x ) + d(x ) φ32 (x − 1) = 0 , x ∈ �, 

φ31 (x ) = 0 , x ∈ [ −1 , 0] , φ32 (x ) = 1 , x ∈ [ −1 , 0] , φ32 (2) = 0 . 

(2.5) 

Now define ȳ = (y 1 , y 2 ) , 

y 1 (x ) = 

{
y 1 L (x ) + Aφ11 (x ) , x ∈ �−, 

y 1 R (x ) + φ21 (x )[ u 2 (2) − y 2 R (2)] + Bφ31 (x ) , x ∈ �+ , 
(2.6) 
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