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a b s t r a c t 

Euler equations under gravitational fields often appear in some interesting astrophysical 

and atmospheric applications. The Euler equations are coupled with gravitational source 

term due to the gravity and admit hydrostatic equilibrium state where the flux produced 

by the pressure gradient is exactly balanced by the gravitational source term. In this pa- 

per, we construct high order discontinuous Galerkin methods for the Euler equations under 

gravitational fields, which are well-balanced for the isentropic type hydrostatic equilibrium 

state. To maintain the well-balanced property, we first reformulate the governing equa- 

tions in an equivalent form. Then we propose a novel source term approximation based 

on a splitting algorithm as well as well-balanced numerical fluxes. Rigorous theoretical 

analysis and extensive numerical examples all suggest that the proposed methods main- 

tain the hydrostatic equilibrium state up to the machine precision. Moreover, one- and 

two-dimensional simulations are performed to test the ability of the current methods to 

capture small perturbation of such equilibrium state, and the genuine high order accuracy 

in smooth regions. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Hydrodynamical evolution under gravitational fields frequently arises in many applications [1,2] including the astro- 

physics and the numerical weather prediction. Specific examples include the researches of atmospheric phenomena that 

are intrinsical in numerical weather prediction and in climate modelling. In addition, there are a wide variety of studies 

in astrophysics for instance modelling solar climate and simulating supernova explosions. In general, the hydrodynamical 

evolution can be modeled by the compressible Euler equations coupled with a gravitational source term: 

ρt + ∇ · (ρu ) = 0 , 

(ρu ) t + ∇ · ( ρu � u + pI d ) = −ρ∇φ, 

E t + ∇ · ((E + p) u ) = −ρu · ∇φ, (1) 
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where x ∈ R 

d ( d = 1 , 2 , 3 ) is the spatial variable, ρ denotes the fluid density, u is the velocity, p represents the pressure, 

and E = 

1 
2 ρ‖ u ‖ 2 + ρe ( e is internal energy) is the non-gravitational total energy which includes the kinetic and internal 

energy of the fluid. φ = φ(x ) is the time independent gravitational potential. The operators ∇ , ∇ · and � are the gradient, 

divergence and tensor product in R 

d , respectively, and I d stands for the identity matrix. To close the system, the pressure p 

is linked to the density and the internal energy through an equation of state denoted by 

p = (γ − 1) ρe = (γ − 1) 
(
E − ρ‖ u ‖ 

2 / 2 

)
, (2) 

with γ being the ratio of specific heats. 

The system (1) belongs to hyperbolic balance laws and admits steady state solutions (also called as hydrostatic equilib- 

rium state), in which the source term is exactly balanced by the non-zero flux gradient. Specifically speaking, there are two 

well-known hydrostatic equilibriums states, i.e., the isothermal [3] and the isentropic equilibrium state [2] , which will be 

explained in detail in Section 2 . Many practical problems [2–9] involve nearly steady state flows under gravitational fields, 

therefore it is essential to correctly capture the effect of gravitational force in these simulations, especially if a long-time 

integration is involved, for example in the modeling galaxy formation [2] and in the atmosphere modeling [9] . However,the 

standard numerical methods generally fail to maintain the steady state exactly, and result in spurious numerical oscillations 

even with much refined mesh [10] . Greenberg et al. [11,12] in 1997 originally introduced well-balanced methods, which pre- 

serve exactly the steady state solutions up to the machine precision. In addition, compared with the non-well-balanced ones, 

the well-balanced methods can accurately resolve small perturbations of such steady state with relatively coarse meshes 

[10,13] . 

In recent years, well-balanced methods have attracted much attention. LeVeque and Bale [14] extended the quasi-steady 

wave-propagation methods to the Euler equations under a static gravitational fields. Finite volume well-balanced discretiza- 

tions with respect to dominant hydrostatics have been proposed by Botta et al. [9] for the nearly hydrostatic flows in the 

numerical weather prediction. Xu and his collaborators [4–6] have extended the gas-kinetic scheme to the multidimensional 

gas dynamic equations. Käppeli and Mishra [2] have proposed well-balanced finite volume schemes for the isentropic hy- 

drostatic equilibrium. High order well-balanced finite difference weighted essentially non-oscillatory (WENO) schemes for 

the isothermal equilibrium are introduced in [3,15] by means of the reformulation of the governing equations. The first at- 

tempt of discontinuous Galerkin (DG) methods the isothermal model has been conducted by Li and Xing [16] based on the 

technique in [3] . Recently, Li and Xing designed high order well-balanced finite volume WENO schemes for both isothermal 

and isentropic models [17] . More recently, Li and Xing developed high order well-balanced finite difference WENO schemes 

[18] and well-balanced DG methods [19] for the isentropic models. Well-balanced finite volume schemes for the general 

hydrostatic equilibrium without any assumption of a thermal equilibrium are recently studied in [1,2,8] . Other related work 

on well-balanced methods can be found in [20–23] . 

The main objective of this study is to develop high order well-balanced DG methods for the Euler equations at isentropic 

equilibrium state under gravitational fields. DG methods are a class of finite element methods using discontinuous piecewise 

polynomial space as the solution and test function spaces (see [24,25] for a brief historic review). Several advantages of 

the DG method, including its accuracy, easy implementation of parallel computing, flexibility for hp-adaptation, convenient 

treatment for the boundary conditions and arbitrary geometry and meshes, make it useful for a wide range of applications 

[26–28] . 

Herein, in order to achieve well-balanced property, we first reformulate the source term in an equivalent form by means 

of the hydrostatic equilibrium state. Then, we propose well-balanced numerical fluxes as well as a novel source term ap- 

proximation. Ultimately, the high order numerical approximations to the fluxes gradient are exactly balanced with those to 

the gravitational source term for the isentropic equilibrium state. 

This paper is organized as follows. In Section 2 , we present well-balanced DG methods for the one-dimensional problems. 

Subsequently, we extend the proposed well-balanced methods to multi-dimensional problems in Section 3 . Section 4 con- 

tains extensive one- and two-dimensional numerical results to demonstrate the performance of proposed DG methods. Some 

conclusions are given in Section 5 . 

2. Well-balanced DG methods for one-dimensional cases 

In this section, we first present the mathematical model of one-dimensional cases as well as hydrostatic equilibrium 

states. Subsequently, we construct well-balanced DG methods. 

2.1. The mathematical model 

In one spatial dimension, the model takes the following form 

ρt + (ρu ) x = 0 , 

(ρu ) t + (ρu 

2 + p) x = −ρφx , 

E t + ((E + p) u ) x = −ρuφx . (3) 
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