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a b s t r a c t 

A new parametric class of semi-implicit numerical schemes for a level set advection equa- 

tion on Cartesian grids is derived and analyzed. An accuracy and a stability study is pro- 

vided for a linear advection equation with a variable velocity using partial Lax–Wendroff

procedure and numerical von Neumann stability analysis. The obtained semi-implicit κ- 

scheme is 2 nd order accurate in space and time in any dimensional case when using a 

dimension by dimension extension of the one-dimensional scheme that is not the case for 

analogous fully explicit or fully implicit κ-schemes. A further improvement is obtained by 

using so-called Corner Transport Upwind extension in two-dimensional case. The extended 

semi-implicit κ-scheme with a specific (velocity dependent) value of κ is 3 rd order accu- 

rate in space and time for a constant advection velocity, and it is unconditional stable ac- 

cording to the numerical von Neumann stability analysis for the linear advection equation 

in general. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

In this work, we derive a new class of semi-implicit 2nd order schemes for numerical solutions of a representative linear 

advection equation 

∂ t u (x, t) + 

�
 V · ∇u (x, t) = 0 , u (x, 0) = u 

0 (x ) 

with a variable velocity � V = 

�
 V (x ) . We are interested in level set methods [34,39] when this equation is used to track implic- 

itly given interfaces, and when discontinuous profiles in the solution are not expected in general. The implicit tracking of 

interfaces can be found in any front propagation problems solved by level set methods, see, e.g., [34,39] and the references 

there. A typical application is a two-phase flow of immiscible fluids where an interface between the phases must be tracked 

to distinguish the different physical properties of fluids [7,9,16,19,21,41,46,50] . Furthermore we mention a tracking of fire 

front in forests [2,14] , and a tracking of water table for groundwater flows [8,18] . 

We consider Cartesian grids that are often applied in the context of level set methods [14,15,34,39,41] . We consider the 

linear advection equation on Cartesian grids also as a starting point for a study of more complex equations like a nonlinear 

advection equation for a motion in normal direction [12,14,30,35,39] and computations on unstructured grids [9,12,17] . We 
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are interested here in Eulerian type of numerical schemes of a finite difference form when a stencil of the scheme does 

not move in time like in Lagrangian type of numerical schemes [5,11] . Furthermore we restrict ourselves to the schemes 

using an implicit or a semi-implicit time discretization with a purpose of favorable stability properties when compared to 

the schemes of Eulerian type using a fully explicit time discretization. 

The fully explicit schemes are standard numerical tool in level set methods for the solution of the linear advection 

equation [12,16,19,21,22,33,34,36,37,39,41,49] . The main advantage is their simplicity as the numerical solution, once the 

scheme is constructed, can be obtained directly without solving any algebraic system. On the other hand the well-known 

restriction of fully explicit schemes with fixed stencils is a CFL stability condition on the choice of time steps that depends, 

among other, on a length of grid steps. 

Although the CFL restriction is not considered as a disadvantage in general, it can be critical for applications with irregu- 

lar computational domains for which the boundaries are treated implicitly like in Cartesian cut cell methods [25] , immersed 

interface methods [14,27,28,49] , ghost fluid methods [7,29] and similar. In the quoted methods the presence of arbitrary 

small cut cells can give locally an arbitrary small grid size that results in an unrealistic CFL restriction if no modifications of 

the numerical scheme is provided. 

Recently some publications [14,30,32] have been dealing with semi-implicit finite volume schemes for a general advec- 

tion equation. The main idea is that the implicit time discretization is used only for the values of numerical solution at 

inflow boundaries of computational cells. The semi-implicit schemes can be advantageous when solving the advection equa- 

tion on implicitly given computational domain as it appears, e.g., when constructing a so-called “extension” velocity in level 

set methods, see [1,52] . This approach is used in [14] where the linear advection equation is solved by a particular semi- 

implicit method on a time dependent domain given by positions of a fire front in a forest, and where no cut-cell problem 

occurs in numerical simulations. 

Although some analysis is provided in [14,30,32] the particular semi-implicit schemes are derived ad hoc. In this work we 

present a unified representation of such semi-implicit schemes using a novel approach of partial Lax–Wendroff procedure 

and study their accuracy and stability properties. The Lax–Wendroff [23] (or Cauchy–Kowalevski [42] ) procedure in its full 

form replaces the time derivatives of the solution in Taylor series by the space derivatives [26,42] . This procedure is used 

in a derivation of high order ADER (Arbitrary DERivatives) schemes that are applied to a variety of applications, see, e.g., 

[42] and the references there. In our approach we apply the steps of Lax–Wendroff procedure only partially by allowing the 

mixed time-space derivatives of the solution in Taylor series. 

We use this procedure with an approach of fully explicit κ-scheme [44,45,47] that includes as particular cases some pop- 

ular numerical schemes like Lax–Wendroff and Fromm scheme [26,47] or QUICKEST scheme [24,47] . The general formulation 

of the semi-implicit κ-scheme gives us an opportunity to use special choices of the parameter κ to improve the accuracy 

and the stability of the scheme in special cases, and to adapt the scheme near boundaries. 

To show some advantages of the partial Lax–Wendroff procedure with respect to the full procedure, we compare the 

semi-implicit κ-scheme with an analogous fully implicit κ-scheme derived in this paper using the full Lax–Wendroff proce- 

dure. We study the stability conditions of all presented schemes using von Neumann stability analysis [20,43,47] realized in 

a numerical way as suggested in [3,4] . 

The semi-implicit κ-scheme is unconditionally stable in the one-dimensional case for all relevant values of κ that is not 

the case for the fully implicit κ-scheme. We show that this property can be used for the immersed interface methods when 

boundary conditions are defined on an implicitly given boundary of computational domain. Furthermore we derive a novel 

particular variant of the semi-implicit κ-scheme by defining a variable (velocity dependent) value of the parameter κ . The 

scheme is 3 rd order accurate in space and time for a constant velocity in 1D. 

Opposite to the fully implicit κ-scheme (and also the fully explicit κ-scheme), the semi-implicit κ-scheme remains 2 nd 

order accurate in space and time in several dimensions when using a standard dimension by dimension extension of 1D 

scheme on Cartesian grids. Unfortunately, this extension of the semi-implicit κ-scheme in several dimensions is conditionally 

stable in general. 

To improve the stability of two-dimensional semi-implicit κ-scheme we apply the idea of Corner Transport Upwind (CTU) 

extension [6,26] by adding an additional discretization term to the scheme. The main result is a novel scheme with the ve- 

locity dependent value of κ using the CTU extension that is unconditionally stable according to the numerical von Neumann 

stability analysis. Moreover the scheme is 3 rd order accurate in the case of constant velocity. For several representative nu- 

merical experiments this variant of the semi-implicit κ-scheme gives the most accurate results among other considered 

choices of κ . 

The paper is organized as follows. In Section 2 we begin with the one-dimensional case where the fully implicit and 

the semi-implicit κ-schemes are derived. In Section 3 we discuss the properties of semi-implicit κ-scheme in several di- 

mensions when obtained by the dimension by dimension extension. Furthermore the Corner Transport Upwind extension 

of the scheme and the treatment of boundary conditions on implicitly given boundary are described. In Section 4 several 

numerical experiments are presented that involve examples on an implicitly given computational domain, an example with 

largely varying velocity, and two standard benchmark examples for tracking of interfaces. Finally we conclude the results in 

Section 5 . 
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