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In this paper, we present an adaptive method for the TV-based model of three norms 

L q 
(
q = 

1 
2 
, 1 , 2 

)
for the image restoration problem. The algorithm with the L 2 norm is used 

in the smooth regions, where the value of | ∇u | is small. The algorithm with the L 1 
2 

norm is 

applied for the jumps, where the value of | ∇u | is large. When the value of | ∇u | is moder- 

ate, the algorithm with the L 1 norm is employed. Thus, the three algorithms are applied for 

different regions of a given image such that the advantages of each algorithm are adopted. 

The numerical experiments demonstrate that our adaptive algorithm can not only keep the 

original edge and original detailed information but also weaken the staircase phenomenon 

in the restored images. Specifically, in contrast to the L 1 norm as in the Rudin–Osher–

Fatemi model, the L 2 norm yields better results in the smooth and flat regions, and the 

L 1 
2 

norm is more suitable in regions with strong discontinuities. Therefore, our adaptive 

algorithm is efficient and robust even for images with large noises. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Image restoration is a significant problem in image processing. It has made many achievements in various fields so far, 

such as medical imaging analysis, communications and so on. Image denoising and deblurring is a fundamental research 

problem in image restoration. Mathematically, the image restoration is to recover the real image u from an observed noisy 

and blurred image z . The degraded process can be modeled as 

z = Ku + n, (1.1) 

where K is a known linear blurring operator and n is an additive noise. It is a typical example of inverse problem and also 

an ill-posed problem. Recently, many varieties of methods and models have been utilized to regularize this ill-posed inverse 

problem. One of the important models is the total variation based restoration model proposed by Rudin, Osher and Fatemi 

(ROF) in [20] . In this model, the total variation of u is used as a regularization penalty functional. The corresponding image 

restoration can then be formulated as the following minimization problem: 

min 

u 

(
μ

∫ 
�

| ∇u | d xd y + 

1 

2 

‖ 

Ku − z ‖ 

2 
2 

)
. (1.2) 
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Here μ> 0 is a penalty parameter. 

Several numerical methods have been proposed to solve the minimization problem (1.2) . For example, in [6] , [17] , the 

authors proposed fast algorithms to solve the ROF model for denoising problems and provided rigorous proofs for the con- 

vergence of their algorithms. 

The methods based on the Bregman iterative regularization were presented by many authors, such as linearized Bregman 

methods in [1,2,4,19] , and split Bregman methods in [3,13,14,16,21] . The augmented Lagrangian method was proposed by J. 

Eckstein in optimization (see [15] ) and was applied in the image processing. 

The main idea of linearized Bregman methods is to deal with nonlinear terms in functional minimizations. The idea of 

operator splitting is used in the split Bregman method and the augmented Lagrangian method. Their convergence has been 

proved in [3,21] . These methods are significant in image restoration and image segmentation, because they are simple, fast, 

and efficient. 

As we all know, the remarkable feature of the ROF model is to its ability of maintaining the sharp edges in images. 

However, a main drawback of the model is the appearance of the so-called staircase phenomenon. Hence, many researchers 

proposed several improvements. 

The Tikhonov’s regularization of using the L 2 norm was proposed in solving ill-posed problems (see [22] ) and was also 

applied for the image restoration. Some models of using L q (1 < q < 2) norm were considered. 

In the papers [5,11,12,18,23,24,26] , L q (0 < q < 1) regularization was applied in the image processing. The L q (0 < q < 1) reg- 

ularization has the following form: 

min 

u 

(
μ‖ 

F u ‖ 

q 
q + 

1 

2 

‖ 

Ku − z ‖ 

2 
2 

)
, (1.3) 

where 0 < q < 1, ‖ F x ‖ q q is the L q quasi-norm in R 

N and the operator F denotes the gradient ∇ or the identity I. 

However, the L q (0 < q < 1) regularization leads to a non-convex and non-Lipschitz optimization problem. Many traditional 

methods are no longer applicable. Moreover, the choice of the parameter q is a challenging problem. Recently many practical 

methods have been developed to deal with the minimization problem (1.3) in [5,12,18,24,26] . Among all L q regularizations 

with q ∈ (0, 1), the L 1/2 regularization, as a representative, was showed by Z.B. Xu et al. [25] . The formulae for L q (q = 

1 
2 , q = 

2 
3 ) regularization problems were deduced by Z.B. Xu et al. in [24] and [5] , respectively. Krishnan et al. [18] and Z.B. Xu 

et al. [5] also demonstrated the advantages of L 1/2 and L 2/3 regularization in image restoration and compressed sensing, 

respectively. 

In this paper, we propose a new robust and efficient adaptive algorithm for the minimization problem (1.3) with the 

operator F ≡∇ and L q 
(
q = 

1 
2 , 1 , 2 

)
regularization, by means of the operator splitting and our multigrid method [7,8,10] . The 

motivation of our paper is to use L q norm of ∇u in TV-based regularization term and the adaptive combination of the three 

solutions for the L q (q = 2 , 1 , 1 2 ) norms in our method. 

This paper is organized as follows. In Section 2 , we briefly describe basic algorithms for the TV-based model problem 

(1.3) by using three norms L q 
(
q = 

1 
2 , 1 , 2 

)
, respectively. In Section 3 , our adaptive algorithm of the three norms is presented. 

Section 4 is devoted to numerical experiments. We end this paper with a brief summary in Section 5 . 

2. Basic algorithms 

In this section, we generalize the split Bregman method to the cases of three norms. 

The following anisotropic problem is considered: 

arg min 

u 
|| u x || q q + || u y || q q + 

μ

2 

‖ 

Ku − z ‖ 

2 
2 . (2.1) 

First, the derivatives u x and u y are replaced by auxiliary variables d x and d y , respectively. 

The formula of the problem (2.1) then becomes 

(u 

k +1 , d k +1 ) = arg min 

u,d x ,d y 
|| d x || q q + || d y || q q + 

μ

2 

‖ 

Ku − z ‖ 

2 
2 + 

λ

2 

‖ 

d x − u x ‖ 

2 
2 + 

λ

2 

‖ 

d y − u y ‖ 

2 
2 , (2.2) 

where the last two items are added such that the auxiliary variables d x and d y can be close to the derivatives u x and u y , 

respectively. 

Using the idea of the split Bregman method, the minimization problem (2.2) is performed efficiently by iteratively mini- 

mizing with respect to u and d , separately. This yields the following three subproblems: 

u 

k +1 = arg min 

u 

μ

2 

∥∥Ku − z + c k 
∥∥2 

2 
+ 

λ

2 

∥∥d x − u x − b k x 

∥∥2 

2 
+ 

λ

2 

∥∥d y − u y − b k y 

∥∥2 

2 
, (2.3) 

d k +1 
x = arg min 

d x 
‖ 

d x ‖ 

q 
q + 

λ

2 

∥∥d x − u 

k +1 
x − b k x 

∥∥2 

2 
, (2.4) 

d k +1 
y = arg min 

d y 
‖ 

d y ‖ 

q 
q + 

λ

2 

∥∥d y − u 

k +1 
y − b k y 

∥∥2 

2 
, (2.5) 
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