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a b s t r a c t 

Compensated algorithms consist in computing the rounding errors of individual operations 

and then adding them later on to the computed result. This makes it possible to increase 

the accuracy of the computed result efficiently. Computing the rounding error of an indi- 

vidual operation is possible through the use of a so-called error-free transformation . In this 

article, we show that it is possible to validate the result of compensated algorithms using 

stochastic arithmetic. We study compensated algorithms for summation, dot product and 

polynomial evaluation. We prove that the use of the random rounding mode inherent to 

stochastic arithmetic does not change much the accuracy of compensated methods. This 

is due to the fact that error-free transformations are no more exact but still sufficiently 

accurate to improve the numerical quality of results. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Computing power rapidly increases and Exascale computing (10 18 floating-point operations per second) should be 

reached in a few years. Such a computing power also means a large number of rounding errors. Indeed, nearly all floating- 

point operations imply a small rounding which can accumulate along the computation and finally an incorrect result may 

be produced. As a consequence, it is fundamental to be able to give some information about the numerical quality of the 

computed results. By numerical quality, we mean here the number of significant digits of the computed result that are not 

affected by rounding errors. 

A well-known solution to assert the numerical quality is to use the numerical library called CADNA 

1 that implements 

Discrete Stochastic Arithmetic (DSA) and makes it possible to provide a confidence interval of the computed result [1–3] . 

DSA requires several executions of the user program with a random rounding mode that consists in rounding any result to 

plus or minus infinity with the same probability. 

If the accuracy of the computed result is not sufficient, it is necessary to increase the precision of the computation. 

For simple enough calculations, a possible technique is the use of compensated algorithms (see [4] ). These algorithms are 

based on error-free transformations (EFTs) that make it possible to compute the rounding errors of some elementary oper- 

ations like addition and multiplication exactly. We now assume a floating-point arithmetic adhering to the IEEE 754-2008 
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standard [5] . In that case, when using rounding to nearest, the rounding error of an addition is a floating-point number 

that can be computed exactly via an EFT. But EFTs are no longer valid when used with directed rounding (rounding to plus 

or minus infinity). Indeed, if we use directed rounding, the error of a floating-point addition is not necessarily a floating- 

point number. However, directed rounding is required in DSA. As a consequence, it is not clear whether we can use DSA to 

validate some numerical codes that heavily rely on the use of error-free transformations. 

In this article, we show that compensated algorithms enable one to increase the results accuracy even with directed 

rounding. Whatever the faithful rounding mode chosen, compensated summation, dot product, and Horner scheme algo- 

rithms provide a result almost as accurate as if it was computed with twice the working precision. Concerning compensated 

summation, although part of this work has been done in [6] , for completeness some previously obtained results are recalled 

in Section 3 . We also show in this article that compensated algorithms as in K -fold precision for summation and dot prod- 

uct [7] provide satisfactory results even with directed rounding: the accuracy obtained is almost as if the working precision 

was multiplied by K . Therefore compensated algorithms can improve accuracy even if they are executed with DSA. Further- 

more DSA enables one to estimate the numerical quality of results of compensated algorithms. This satisfactory behavior of 

compensated algorithms with DSA is confirmed by the numerical experiments described in this article. 

This outline of this article is as follows. In Section 2 we give some definitions and notations used in the sequel. In the 

next sections, we show the impact of a directed rounding mode on compensated algorithms. Sections 3 –7 are successively 

devoted to the error analysis with directed rounding of compensated summation, compensated dot product, compensated 

Horner scheme, summation as in K -fold precision, and dot product as in K -fold precision. Finally, numerical experiments 

carried out using the CADNA library are presented in Section 8 . 

2. Definitions and notations 

In this paper, we assume to work with a binary floating-point arithmetic adhering to IEEE 754–2008 floating-point stan- 

dard [5] and we suppose that no overflow occurs. The error bounds for the compensated summation that are presented in 

Sections 3 and 6 remain valid in the presence of underflow. For the other compensated algorithms considered in this article 

(dot product and Horner scheme) we assume that no underflow occurs so as to present simpler error bounds. 

The set of floating-point numbers is denoted by F , the bound on relative error for round to nearest by u . With the IEEE 

754 binary64 format (double precision), we have u = 2 −53 and with the binary32 format (single precision), u = 2 −24 . 

We denote by fl∗ ( · ) the result of a floating-point computation, where all operations inside parentheses are done in 

floating-point working precision with a directed rounding (that is to say toward −∞ or + ∞ ). Floating-point operations in 

IEEE 754 satisfy [8] 

∃ ε 1 ∈ R , ε 2 ∈ R such that 

fl∗(a ◦ b) = (a ◦ b)(1 + ε 1 ) = (a ◦ b) / (1 + ε 2 ) for ◦ = { + , −} and | ε ν | ≤ 2 u . (2.1) 

As a consequence, 

| a ◦ b − fl∗(a ◦ b) | ≤ 2 u | a ◦ b| and | a ◦ b − fl∗(a ◦ b) | ≤ 2 u | fl∗(a ◦ b) | for ◦ = { + , −} . (2.2) 

We use standard notations for error estimations. The quantities γ n are defined as usual [8] by 

γn (u ) := 

n u 

1 − n u 

for n ∈ N , 

where it is implicitly assumed that n u < 1. 

To keep track of the (1 + ε) factors in our error analysis, we use the relative error counters introduced by Stewart [9] . 

For a positive integer n , 〈 n 〉 denotes the following product 

〈 n 〉 (u ) = 

n ∏ 

i =1 

(1 + ε i ) 
ρi with ρi = ±1 and | ε i | ≤ u (i = 1 , . . . , n ) . 

The relative error counters satisfy 〈 j〉 (u ) 〈 k 〉 (u ) = 〈 j〉 (u ) / 〈 k 〉 (u ) = 〈 j + k 〉 (u ) . When 〈 n 〉 denotes any error counter, then there 

exists a quantity θn such that 

〈 n 〉 (u ) = 1 + θn (u ) and | θn (u ) | ≤ γn (u ) . 

Remark 1. We give the following relations on γ n , that will be frequently used in the sequel of the paper. For any positive 

integer n , 

n u ≤ γn (u ) , γn (u ) ≤ γn +1 (u ) , (1 + u ) γn (u ) ≤ γn +1 (u ) , 2 n u (1 + γ2 n −2 (u )) ≤ γ2 n (u ) . 

Remark 2. Recently, it has been shown that classic Wilkinson-type error bounds for summation, dot product and polynomial 

evaluation [10–12] can be slightly improved by replacing the factor γ n ( u ) by n u with no condition on n (for summation 

and dot product). In the sequel, it is likely that all the error bounds could also be improved by replacing all the γ n ( u ) 

by n u . However, it is clear that γ n ( u ) is very close to n u . Moreover, the proofs for improving the bounds would be more 

complicated and tricky, and would not be useful for the paper. We just aim at showing that the relative accuracy is in O(u ) 

for classic algorithms and in O(u 

2 ) for compensated algorithms with directed roundings. 
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