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a b s t r a c t 

An acyclic coloring of a graph is a proper coloring of the graph, for which every cycle uses 

at least three colors. Let G 4 be the set of maximal planar graphs of minimum degree 4, 

such that each graph in G 4 contains exactly four odd-vertices and the subgraph induced 

by the four odd-vertices contains a quadrilateral. In this article, we show that every acyclic 

4-coloring of a maximal planar graph with exact four odd-vertices is locally equitable with 

regard to its four odd-vertices. Moreover, we obtain a necessary and sufficient condition 

for a graph in G 4 to be acyclically 4-colorable, and give an enumeration of the acyclically 

4-colorable graphs in G 4 . 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

All graphs considered in this paper are simple and finite. For a graph G , let V ( G ) and E ( G ) be the set of vertices and edges 

of G respectively. A neighbor of a vertex v in G is a vertex that is connected to v by an edge. We denote by N G ( u ) the set 

of neighbors in G of u , by d G (u ) = | N G (u ) | the degree in G of u , and by δ( G ) and �( G ) the minimum and maximum degree 

of G, respectively. A vertex u with d G (u ) = k is called a k-vertex of G , and an odd-vertex when k is odd and an even-vertex 

when k is even. Define N G [ u ] = N G (u ) ∪ { u } . For V 

′ ⊆V ( G ), G [ V 

′ ] is the subgraph of G induced by V 

′ , and G − V ′ is the graph 

obtained from G by deleting vertices in V 

′ and the edges incident with them. A k -cycle C of a connected graph G is called a 

separating k-cycle if G − V (C) results in a disconnected graph, where a k-cycle is a cycle of length k . For more notations and 

terminologies, we refer the reader to the book [2] . 

A proper k-coloring of a graph G is a partition { V 1 , V 2 , . . . , V k } of V ( G ), where V i is an independent set for i = 1 , 2 , . . . , k 

and denotes the (possibly empty) set of vertices assigned color i . The sets V i are called the color classes of the coloring. 

An acyclic k-coloring of a graph G is a proper k -coloring of G such that every cycle uses at least three colors. G is called 

acyclically k-colorable if it admits an acyclic k -coloring. 

There are a large number of applications of acyclic colorings. For example, acyclic colorings of graphs can be applied 

to estimate large and sparse symmetric matrices [9,12] , and to compute upper bounds on the volume of 3-dimensional 

straight-line grid drawings of planar graphs [10] . The acyclic chromatic number of a graph can be used to obtain an upper 

bound on the size of a “feedback vertex set” of a graph, which has wide applications in operation system, database system, 

genome assembly, and VLSI chip design [11] . Additionally, acyclic coloring has also found applications to some other plane 

graph coloring and partitioning problems. In particular, acyclic 5-colorability implies, by means of short nice arguments, 
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the following best-known upper bounds for coloring parameters on planar graphs: 80 for the oriented chromatic number 

[16] and, combined with the Four Color Theorem, 20 for the star chromatic number [1] . 

Acyclic coloring was introduced by Grünbaum et al. [13] , who proved that every planar graph is acyclically 9-colorable, 

and conjectured that five colors are sufficient. Borodin [3] (also see [4] ) established the validity of this conjecture by showing 

that every planar graph is acyclically 5-colorable. This bound is the best because there exist planar graphs with no acyclic 

4-colorings [13,17] . In 1976, Kostochka and Mel’nikov [14] proved that graphs with no acyclic 4-coloring can be found among 

3-degenerated bipartite planar graphs. Additionally, with regard to the acyclically 4-colorable planar graphs, many sufficient 

conditions have been obtained [5–8,15] , in which the best result is given by Borodin who showed that each planar graph 

without 4- and 5-cycles is acyclically 4-choosable [7] . 

A planar graph G is called a maximal planar graph (or plane triangulation ) if the addition of any edge to G results in a 

nonplanar graph. In what follows, we denote by M 

4 the set of maximal planar graphs with exactly four odd-vertices, and by 

G 4 a subclass of M 

4 such that each G ∈ G 4 has minimum degree 4 and the subgraph of G induced by its four odd-vertices 

contains a quadrilateral. Further, we use G 4 n to denote the set of graphs on n vertices in G 4 . 
In [18] , the authors proved that any acyclically 4-colorable maximal planar graph of minimum degree 4 contains at 

least four odd-vertices, and gave some necessary conditions for a 4-connected maximal planar graph with exactly four odd- 

vertices to be acyclically 4-colorable. It seems difficult to find the sufficient conditions for a 4-connected graph in M 

4 to 

be acyclically 4-colorable. In this paper, we show that every acyclic 4-coloring of an acyclically 4-colorable maximal planar 

graph with exactly four odd-vertices is locally equitable with regard to its four odd-vertices. Moreover, we obtain a necessary 

and sufficient condition for a graph G ∈ G 4 to be 4-colorable and give an enumeration formula to compute the number of 

4-colorable maximal planar graphs in G 4 n . 

2. Acyclic 4-colorings of maximal planar graphs with exactly four odd-vertices 

This section is devoted to the structure of acyclic 4-colorings of maximal planar graphs with exactly four odd-vertices. 

For a k -coloring f of a graph G and a vertex set V 

′ ⊆V ( G ), we refer to f as a locally equitable coloring with regard to V 

′ if 

| V i ∩ V ′ | = | V j ∩ V ′ | for any two distinct color classes V i and V j of f with V i ∩ V 

′ � = ∅ and V j ∩ V 

′ � = ∅ . We also say V 

′ to be colored 

( locally ) equitably under f . 

The dual graph G 

∗ of a plane graph G is a graph that has a vertex corresponding to each face of G , and an edge joining 

two neighboring faces for each edge in G . If a graph G ∈ M 

4 , we can easily see that the dual graph G 

∗ of G is a planar cubic 

3-connected graph that contains exactly four odd-faces, where an odd-face of a planar graph is a face that the number of 

edges in its boundary is odd number. 

Let X and Y be the sets of vertices of a planar graph G = (V, E) such that X = V \ Y . We refer to the set of edges of G with 

one end in X and the other end in Y , denote by E [ X , Y ], as an edge cut of G . A natural conclusion follows that G 

∗[ E ∗[ X , Y ]] is 

a cycle for any edge cut E [ X , Y ] (| E [ X , Y ]| ≥ 3) of G , where G 

∗ is the dual of G and E ∗[ X , Y ] is the set of edges corresponding 

to E [ X , Y ] in G 

∗. 

For a maximal planar graph G ∈ M 

4 , if V ( G ) has a partition { V 1 , V 2 } such that G [ V i ] is a tree for i = 1 , 2 , then we desire 

to know how many odd-vertices are contained in V 1 and V 2 respectively. We begin with a general observation as follows. 

Recall that a cycle containing all vertices of a graph is called a Hamilton cycle of the graph. 

Lemma 2.1. Let G be a maximal planar graph. If there is a partition { V 1 , V 2 } of V ( G ) such that G [ V 1 ] and G [ V 2 ] are trees, then 

V i , i = 1 , 2 , contains an even number of odd-vertices. 

Proof. Let E [ V 1 , V 2 ] be an edge cut of G , and E ∗[ V 1 , V 2 ] be the corresponding edge set of E [ V 1 , V 2 ] in the dual G 

∗ of G . 

Then G 

∗[ E ∗[ X , Y ]] is a cycle, say C . Since both G [ V 1 ] and G [ V 2 ] are trees and each face of G is a triangle, it follows that each 

face of G contains exactly two edges of E [ V 1 , V 2 ]. Therefore, C is a Hamilton cycle of G 

∗. Let F i be the set of faces in G 

∗

corresponding to V i for i = 1 , 2 . Then, F 1 and F 2 are in the interior and exterior of C , respectively. Because the number of 

odd-faces in a planar graph is even and C contains even number vertices (since G 

∗ is 3-regular), it has that both F 1 and F 2 
contain an even number of odd-faces. Correspondingly, V 1 and V 2 contains an even number of odd-vertices. �

According to Lemma 2.1 , we have the following result. 

Corollary 2.2. For G ∈ M 

4 , if there is a partition { V 1 , V 2 } of V ( G ) such that G [ V i ] is a tree for i = 1 , 2 , then either each of V 1 

and V 2 contains exactly two odd-vertices, or one of V 1 , V 2 contains four odd-vertices. 

For a k ( ≥ 2)-coloring f of a graph G , we use G [ i , j ] ( i � = j ) to denote the subgraph of G , induced by the vertices colored by 

i and j under f . 

Theorem 2.3. Let G ∈ M 

4 be an acyclically 4-colorable maximal planar graph, and v 1 , v 2 , v 3 , v 4 be its four odd-vertices. Then for 

each acyclic 4-coloring f of G , { v 1 , v 2 , v 3 , v 4 } are colored equitably under f. 

Proof. Let C = { 1 , 2 , 3 , 4 } be the color set. Since f is an acyclic 4-coloring of G , it follows that G [ i , j ] does not contain any 

cycle for i , j ∈ C , i � = j . So, | V (G [ i, j]) | − | E(G [ i, j]) | ≥ 1 . Because 3 | V (G ) | − | E(G ) | = 6 by the Euler formula, we can easily 

deduce that | V (G [ i, j]) | − | E(G [ i, j]) | = 1 . Hence G [ i , j ] is a tree. Consider G [1, 2] and G [3, 4]; by Corollary 2.2 , either G [1, 2] 

contains two odd-vertices and G [3, 4] contains two odd-vertices, or one of G [1, 2] and G [3, 4] contains four odd-vertices 
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