Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

On acyclically 4-colorable maximal planar graphs

Enqiang Zhu^{a,*}, Zepeng Li^b, Zehui Shao^a, Jin Xu^c

^a School of Computer Science and Educational Software, Guangzhou University, Guangzhou 510006, China

^b School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China

^c School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China

ARTICLE INFO

MSC: 05C15

Keywords: Acyclically coloring Maximal planar graphs Locally equitable coloring Necessary and sufficient condition Enumeration

ABSTRACT

An acyclic coloring of a graph is a proper coloring of the graph, for which every cycle uses at least three colors. Let \mathcal{G}^4 be the set of maximal planar graphs of minimum degree 4, such that each graph in \mathcal{G}^4 contains exactly four odd-vertices and the subgraph induced by the four odd-vertices contains a quadrilateral. In this article, we show that every acyclic 4-coloring of a maximal planar graph with exact four odd-vertices is locally equitable with regard to its four odd-vertices. Moreover, we obtain a necessary and sufficient condition for a graph in \mathcal{G}^4 to be acyclically 4-colorable, and give an enumeration of the acyclically 4-colorable graphs in \mathcal{G}^4 .

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

All graphs considered in this paper are simple and finite. For a graph *G*, let *V*(*G*) and *E*(*G*) be the set ofvertices and edges of *G* respectively. A neighbor of a vertex v in *G* is a vertex that is connected to v by an edge. We denote by $N_G(u)$ the set of neighbors in *G* of *u*, by $d_G(u) = |N_G(u)|$ the degree in *G* of *u*, and by $\delta(G)$ and $\Delta(G)$ the minimum and maximum degree of *G*, respectively. A vertex *u* with $d_G(u) = k$ is called a *k*-vertex of *G*, and an odd-vertex when *k* is odd and an even-vertex when *k* is even. Define $N_G[u] = N_G(u) \cup \{u\}$. For $V' \subseteq V(G)$, G[V'] is the subgraph of *G* induced by *V'*, and G - V' is the graph obtained from *G* by deleting vertices in *V'* and the edges incident with them. A *k*-cycle *C* of a connected graph *G* is called a separating *k*-cycle if G - V(C) results in a disconnected graph, where a *k*-cycle is a cycle of length *k*. For more notations and terminologies, we refer the reader to the book [2].

A proper *k*-coloring of a graph *G* is a partition $\{V_1, V_2, ..., V_k\}$ of V(G), where V_i is an independent set for i = 1, 2, ..., k and denotes the (possibly empty) set of vertices assigned color *i*. The sets V_i are called the *color classes* of the coloring. An *acyclic k*-coloring of a graph *G* is a proper *k*-coloring of *G* such that every cycle uses at least three colors. *G* is called *acyclically k*-colorable if it admits an acyclic *k*-coloring.

There are a large number of applications of acyclic colorings. For example, acyclic colorings of graphs can be applied to estimate large and sparse symmetric matrices [9,12], and to compute upper bounds on the volume of 3-dimensional straight-line grid drawings of planar graphs [10]. The acyclic chromatic number of a graph can be used to obtain an upper bound on the size of a "feedback vertex set" of a graph, which has wide applications in operation system, database system, genome assembly, and VLSI chip design [11]. Additionally, acyclic coloring has also found applications to some other plane graph coloring and partitioning problems. In particular, acyclic 5-colorability implies, by means of short nice arguments,

* Corresponding author.

https://doi.org/10.1016/j.amc.2018.02.015 0096-3003/© 2018 Elsevier Inc. All rights reserved.

E-mail addresses: zhuenqiang@pku.edu.cn, sailing@pku.edu.cn (E. Zhu).

Acyclic coloring was introduced by Grünbaum et al. [13], who proved that every planar graph is acyclically 9-colorable, and conjectured that five colors are sufficient. Borodin [3] (also see [4]) established the validity of this conjecture by showing that every planar graph is acyclically 5-colorable. This bound is the best because there exist planar graphs with no acyclic 4-colorings [13,17]. In 1976, Kostochka and Mel'nikov [14] proved that graphs with no acyclic 4-coloring can be found among 3-degenerated bipartite planar graphs. Additionally, with regard to the acyclically 4-colorable planar graphs, many sufficient conditions have been obtained [5–8,15], in which the best result is given by Borodin who showed that each planar graph without 4- and 5-cycles is acyclically 4-choosable [7].

A planar graph *G* is called a *maximal planar graph* (or *plane triangulation*) if the addition of any edge to *G* results in a nonplanar graph. In what follows, we denote by \mathcal{M}^4 the set of maximal planar graphs with exactly four odd-vertices, and by \mathcal{G}^4 a subclass of \mathcal{M}^4 such that each $G \in \mathcal{G}^4$ has minimum degree 4 and the subgraph of *G* induced by its four odd-vertices contains a quadrilateral. Further, we use \mathcal{G}_n^4 to denote the set of graphs on *n* vertices in \mathcal{G}^4 .

In [18], the authors proved that any acyclically 4-colorable maximal planar graph of minimum degree 4 contains at least four odd-vertices, and gave some necessary conditions for a 4-connected maximal planar graph with exactly four odd-vertices to be acyclically 4-colorable. It seems difficult to find the sufficient conditions for a 4-connected graph in \mathcal{M}^4 to be acyclically 4-colorable. In this paper, we show that every acyclic 4-coloring of an acyclically 4-colorable maximal planar graph with exactly four odd-vertices is locally equitable with regard to its four odd-vertices. Moreover, we obtain a necessary and sufficient condition for a graph $G \in \mathcal{G}^4$ to be 4-colorable and give an enumeration formula to compute the number of 4-colorable maximal planar graphs in \mathcal{G}_n^{4} .

2. Acyclic 4-colorings of maximal planar graphs with exactly four odd-vertices

This section is devoted to the structure of acyclic 4-colorings of maximal planar graphs with exactly four odd-vertices.

For a *k*-coloring *f* of a graph *G* and a vertex set $V' \subseteq V(G)$, we refer to *f* as a *locally equitable coloring with regard to* V' if $|V_i \cap V'| = |V_j \cap V'|$ for any two distinct color classes V_i and V_j of *f* with $V_i \cap V' \neq \emptyset$ and $V_j \cap V' \neq \emptyset$. We also say V' to be colored (*locally*)equitably under *f*.

The dual graph G^* of a plane graph G is a graph that has a vertex corresponding to each face of G, and an edge joining two neighboring faces for each edge in G. If a graph $G \in \mathcal{M}^4$, we can easily see that the dual graph G^* of G is a planar cubic 3-connected graph that contains exactly four odd-faces, where an *odd-face* of a planar graph is a face that the number of edges in its boundary is odd number.

Let *X* and *Y* be the sets of vertices of a planar graph G = (V, E) such that $X = V \setminus Y$. We refer to the set of edges of *G* with one end in *X* and the other end in *Y*, denote by E[X, Y], as an *edge cut* of *G*. A natural conclusion follows that $G^*[E^*[X, Y]]$ is a cycle for any edge cut E[X, Y] ($|E[X, Y]| \ge 3$) of *G*, where G^* is the dual of *G* and $E^*[X, Y]$ is the set of edges corresponding to E[X, Y] in G^* .

For a maximal planar graph $G \in \mathcal{M}^4$, if V(G) has a partition $\{V_1, V_2\}$ such that $G[V_i]$ is a tree for i = 1, 2, then we desire

to know how many odd-vertices are contained in V_1 and V_2 respectively. We begin with a general observation as follows. Recall that a cycle containing all vertices of a graph is called a *Hamilton cycle* of the graph.

Lemma 2.1. Let G be a maximal planar graph. If there is a partition $\{V_1, V_2\}$ of V(G) such that $G[V_1]$ and $G[V_2]$ are trees, then V_i , i = 1, 2, contains an even number of odd-vertices.

Proof. Let $E[V_1, V_2]$ be an edge cut of G, and $E^*[V_1, V_2]$ be the corresponding edge set of $E[V_1, V_2]$ in the dual G^* of G. Then $G^*[E^*[X, Y]]$ is a cycle, say C. Since both $G[V_1]$ and $G[V_2]$ are trees and each face of G is a triangle, it follows that each face of G contains exactly two edges of $E[V_1, V_2]$. Therefore, C is a Hamilton cycle of G^* . Let F_i be the set of faces in G^* corresponding to V_i for i = 1, 2. Then, F_1 and F_2 are in the interior and exterior of C, respectively. Because the number of odd-faces in a planar graph is even and C contains even number vertices (since G^* is 3-regular), it has that both F_1 and F_2 contain an even number of odd-vertices. \Box

According to Lemma 2.1, we have the following result.

Corollary 2.2. For $G \in \mathcal{M}^4$, if there is a partition $\{V_1, V_2\}$ of V(G) such that $G[V_i]$ is a tree for i = 1, 2, then either each of V_1 and V_2 contains exactly two odd-vertices, or one of V_1 , V_2 contains four odd-vertices.

For a $k(\geq 2)$ -coloring f of a graph G, we use G[i, j] $(i \neq j)$ to denote the subgraph of G, induced by the vertices colored by i and j under f.

Theorem 2.3. Let $G \in \mathcal{M}^4$ be an acyclically 4-colorable maximal planar graph, and v_1, v_2, v_3, v_4 be its four odd-vertices. Then for each acyclic 4-coloring f of G, { v_1, v_2, v_3, v_4 } are colored equitably under f.

Proof. Let $C = \{1, 2, 3, 4\}$ be the color set. Since f is an acyclic 4-coloring of G, it follows that G[i, j] does not contain any cycle for $i, j \in C, i \neq j$. So, $|V(G[i, j])| - |E(G[i, j])| \ge 1$. Because 3|V(G)| - |E(G)| = 6 by the Euler formula, we can easily deduce that |V(G[i, j])| - |E(G[i, j])| = 1. Hence G[i, j] is a tree. Consider G[1, 2] and G[3, 4]; by Corollary 2.2, either G[1, 2] contains two odd-vertices and G[3, 4] contains two odd-vertices, or one of G[1, 2] and G[3, 4] contains four odd-vertices

Download English Version:

https://daneshyari.com/en/article/8901084

Download Persian Version:

https://daneshyari.com/article/8901084

Daneshyari.com