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a b s t r a c t 

This paper presents a procedure to detect unreliable computer simulations of recursive 

functions. The proposed method calculates a lower bound error which is derived from two 

different pseudo-orbits based on interval extensions. The interval extensions are gener- 

ated by taking into account the associative property of multiplication, which keeps the 

same error bound. We have tested our approach on the logistic map using many different 

programming languages and simulation packages, including Matlab, Scilab, Octave, Fortran 

and C. In all cases, the number of iterates is significantly lower than that considered reli- 

able in the existing literature. We have also used the lower bound error on the logistic map 

and on the polynomial NARMAX for the Rössler equations to estimate the largest Lyapunov 

exponent, which determines the critical simulation time that guarantees the reliability of 

the simulation. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Numerical computing and dynamical systems go hand in hand and this has been a long-term relation. In the 60s, it 

had already been observed the use of computers dedicated to efforts in understanding climate phenomena [22] . In fact, 

many numerical problems in dynamical systems, such as finding sinks in the Hénon Map or iterating the Lorenz attractor, 

have motivated research on arithmetic algorithms for extended precision [20] . As stated in [25] , computational techniques 

are applied to different topics in nonlinear dynamics, such as synchronisation, bifurcation and chaos, complex networks, 

conservative systems and nonlinear partial differential equations. 

In fact, many works have been published delivering an idea of reliability in their numerical solutions of nonlinear dy- 

namical systems. This is not the precise idea that Lozi states in [24] . In fact, he asks if “In the simple case of a dynamic 

discrete system (of Hénon map) there are doubts as to the nature of the computational results: long unstable pseudo-orbits 

or strange attractors?” [24] . Other earlier works, such as [6,10,37] , have already raised some suspicions on the conclusions 

of nonlinear dynamics upon numerical simulations. Recently, Galias [11] expresses the importance of developing methods 
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to prove the existence of chaotic attractors and warns its audience to the dangers of rounding errors for simulations and 

analysis of nonlinear circuits. Similar results can be found in [33] , but using a method based on interval extension. 

Different from the Lorenz system, the proof for the chaotic attractor of the Chua’s circuit needs to be further investigated 

[11] . The case of Chua’s circuit is an outstanding example of nonlinear dynamical system built upon on inequalities, which 

has been seen as important source of inconsistent results according to [3] . A “good agreement” between simulation and 

experimental data cannot be seen as the final answer, which has been considered as paradoxical in [6] . In such direction, it 

has been reported that a simulation of the Chua’s circuit using the same set of parameters and initial conditions presents 

chaotic and periodical oscillation depending of the numerical method applied [41] . This kind of chaos suppression according 

numerical methods is not a new issue and it has been already studied in works such as [7] . Another fact that points out for 

the importance of the reliability [14,34] and reproducibility [40,43] of numerical simulation is the fact that there are theo- 

retical models with no possible real experiment. Take an example of logistic map [26] , where x is considered the population 

density and a continuous variable in the interval of 0 to 1. It means that a population has a infinite number of individuals, 

which is impossible to make an equivalent experiment. 

The term “Computational Chaos” has been defined during investigations on chaotic behaviour of difference equations 

used to approximate a continuous system represented by a set of differential equations as the step-size is increased [30] . 

Further results on the same issue can be found in [11,21,23,45,46] . For instance, in [21] , the author has introduced the con- 

cept of critical predictable time to provide a more precise description of computed chaotic solutions of nonlinear differential 

equations. 

According to [17] , one of the first attempts to examine the relation between numerical experiments and the true dynam- 

ics of a system is found in [15] . By means of the Cray X-MP, a computer costing multi-million dollars at that time, they have 

reported the shadowing property as valid for a considerable number of iterates when simulating the logistic map for the 

parameter r = 3 . 8 and the initial condition x 0 = 0 . 4 . When this case is considered, according to [15] , a pseudo-orbit of the 

logistic map is shadowed by a true orbit within a distance of 10 −8 for 10 7 iterates. Since the theorem is proved for specific 

conditions, “it can be raised an issue if the computer test constitutes a sufficient condition, and therefore the theorem is 

proved for all cases, or whether it is a necessary condition, the result may not be valid for all cases”, as states [32] . 

Many researchers have applied the result in [15] on studies concerning the dynamical systems theory since then. More 

than 150 citations of [15] have been analysed through the Scopus online platform and it was observed that, in some cases, 

the shadowing theorem is seen as a property possible to be generalised for non-hyperbolic systems. The paper of [15] is 

mentioned as the one that proves the shadowing property for systems with non-hyperbolic behaviour by [39] . In the same 

line, [15] is considered as “first proof of the existence of a shadow for a two-dimensional non-hyperbolic system over a 

non-trivial length of time” by [17] . In addition, remarks that the shadowing property had been shown valid for some initial 

condition and parameter values of the logistic map, without mentioning the cases for which the property fails are presented 

in [4] . 

Thus, beyond using the computer to study nonlinear systems, it also becomes important verifying the reliability of its nu- 

merical results. Some recent works have explored the issue of checking computer results [11,31,32] . An interesting approach 

to analyse the forward error of iterative numerical algorithm is proposed in [16] . The authors state that “many iterative 

numerical algorithms can be considered as dynamical systems, and therefore can be studied using control systems theory”, 

and although the proposed forward error analysis schemes may also be applied to algorithms that can be represented by 

a nonlinear dynamical system, it will be necessary to show that the dynamical system used to represent the algorithm is 

Lyapunov stable [16] . One of the key steps towards a control-theory approach to analyse error may require a way to proper 

measure this error. In this sense, based on the preliminary work about convergence of recursive functions on a computer 

[31] , a method has been proposed to calculate a lower bound error for free-run simulation of polynomial NARMAX [2] by 

Nepomuceno and Martins [32] . In that work, a simulation is performed by means of two interval extensions, derived from 

mathematical properties, such as commutative, distributive or associative [29] . These two interval extensions produce two 

different pseudo-orbits. Applying interval analysis, the authors show a way to calculate an inferior limit, that is, a lower 

bound, for the error. This method can be extended to other types of recursive functions, as done in [33] . More recently, the 

lower bound error has been used to develop a fast and robust method to calculate the positive largest Lyapunov exponent 

by Mendes and Nepomuceno [27,33] . It has been also used to estimate a critical simulation time, similar to that presented 

in [21] , but calculated by means of interval extensions. 

In [32] , three identified models from literature have been investigated and it has been showed that it is not possible 

to undertake an arbitrary number of iterations for some cases of simulation of polynomial NARMAX without losing all 

significant digits of the simulation. In fact, there are cases that less than one hundred of iterations, all digits lose their 

significance. This is a serious matter, as for many types of validation techniques, such as the bifurcation diagrams, hundreds 

of iterations have been considered as transient. For instance, in [35, p. 40] , the author described a procedure to build a 

bifurcation diagram of the logistic map considering the first 500 iterations as transient. This suggested procedure does not 

make any requirement of computer precision, on the contrary, what we have seen in the literature, most of works have been 

using only double precision. For instance, in [1] the authors use 10 0 0 points in their algorithm to detect nonlinear dynamics 

without any description of software or precision. Regarding the studies on Hénon Map, it is noticed a need of an extremely 

large number of points to observe a sink starting from random initial conditions by [12] . The author in [12] concludes that 

the most numerical studies do not display anything but transient behaviour. This emphasises the need to a very careful 

analysis of reliability of a numerical simulation. 
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