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The goal of this paper is to predetermine the steps m after which the first derivative is re–

evaluated for multi-step Newton-type method used to approximate solutions of equations. 
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1. Introduction 

Numerous problems in computational sciences and also in engineering such as, problems from optimization; economic 

equilibrium theory; astrophysics; elasticity; neutron transport; dynamical systems to mention a few, can be brought in a 

form like 

F (x ) = 0 (1.1) 

using mathematical modeling [1,4–6,11–13] . Here, F : D ⊆B 1 → B 2 is a Fréchet differentiable operator, B 1 , B 2 are Banach spaces 

and D is a convex subset of B 1 . Finding a solution p of Eq. (1.1) is a great challenge in general. One wishes to ob- 

tain a solution p in closed form but this is possible only in spacial cases. That explains why most solution methods for 

Eq. (1.1) are usually iterative. 

There is a plethora of high convergence order iterative methods for solving Eq. (1.1) involving high order derivatives 

[1–15] . However, these methods are unattractive, since they are very expensive. Currently, there is an increasing interest in 

developing iterative methods of high convergence order using the first Fréchet derivative and and its inverse. In particular, 

we consider the k -step Newton-type method defined for each n = 0 , 1 , 2 , . . . , k where k is a natural number, and some 

starting point x 0 = x 0 
0 
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x 1 n = x 0 n − F ′ (x 0 n ) 
−1 F (x 0 n ) 

x 2 n = x 1 n − F ′ (x 0 n ) 
−1 F (x 1 n ) 

. . . 

x k n = x k −1 
n − F ′ (x 0 n ) 

−1 F (x k −1 
n ) 

x 0 n +1 = x k n (1.2) 

The convergence of such methods has been studied under Lipschitz-conditions and w -type conditions by several authors 

[4–10] . The convergence order is k + 1 . The convergence domain of method (1.2) is small in general under the mentioned 

conditions limiting the applicability of method (1.2) . In the present study, we use center-Lipschitz conditions for the com- 

putation of the upper bound on the inverses ‖ F ′ (x 0 n ) 
−1 F ′ (x 0 

0 
) ‖ instead of the less accurate Lipschitz conditions. Moreover, 

we locate a more precise domain than before, where the iterates lie leading to smaller Lipschitz constants. We also use 

our method of recurrent functions that has been effective in the study of iterative methods [1–4] . This way, we obtain the 

following advantages (I): 

( i 1 ) Larger convergence domain. 

( i 2 ) Tighter error bounds on the distances ‖ x m 

m 

− x m −1 
n ‖ , ‖ x n n − p‖ , m = 2 , 3 , . . . , k . 

( i 3 ) More precise information on the location of the solution p . 

We also provide some results on how to predetermine the choice of k in the general case of a Banach space setting as 

well as in the special case when B 1 = B 2 = R 

j ( j a natural number). 

The rest of the paper is structured as follows: The semi-local convergence analysis is presented in Section 2 and the 

applications in Section 3 . 

2. Semi-local convergence analysis 

We need an auxiliary result on majorizing sequences for method (1.2) . 

Lemma 1. Let L 0 , L and η be positive numbers with L 0 ≤ L. Define the scalar sequence { t n , m 

} for each n = 0 , 1 , 2 , . . . , m = 

1 , 2 , . . . , k by 

t 0 , 0 = 0 , t 0 , 1 = η, 

t n, 2 = t n, 1 + 

L 

2 

(t n, 1 − t n, 0 ) 
2 

1 − L 0 t n, 0 

for m = 2 , (2.1) 

and for m 	 = 2 

t n,m 

= t n.m −1 + 

L 

2 

[(t n,m −1 − t n, 0 ) + (t n,m −2 − t n, 0 )](t n,m −1 − t n, 0 ) 

1 − L 0 t n, 0 

t n,k = t n +1 , 0 

Denote by ξ = ξ (k ) = ξk the smallest positive root of the function ϕk defined on the interval [0, 1] by 

ϕ k (t) = L (t k − 1)[(1 + t + · · · + t k −1 ) + (1 + t + · · · + t k −2 )] + 2 L 0 (1 + t + · · · + t k −1 ) t k +1 . (2.2) 

Suppose that 

0 ≤ L (t 0 ,k + t 0 ,k −1 ) 

2(1 − L 0 t 0 ,k ) 
≤ ξ < 1 − L 0 η. (2.3) 

Then, scalar sequence { t n , m 

} is increasing, bounded from above by 

t ∗∗ = 

η

1 − ξ
(2.4) 

and converges to its unique least upper bound t ∗ satisfying 

η ≤ t ∗ ≤ t ∗∗. (2.5) 

Moreover, for each n = 0 , 1 , 2 , . . . , m = 1 , 2 , . . . , k, the following items hold 

t n,m −1 ≤ t n,m 

(2.6) 

t ∗ < 

1 

L 0 
(2.7) 

0 ≤ t n,m 

− t n,m −1 ≤ ξ (t n,m −1 − t n,m −2 ) (2.8) 

and 
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