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a b s t r a c t 

In this paper, we develop a new numerical algorithm for solving the Riesz tempered space 

fractional diffusion equation. The stability and convergence of the numerical scheme are 

discussed via the technique of matrix analysis. Finally, numerical experiments are per- 

formed to confirm the effectiveness of our numerical algorithm. 
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1. Introduction 

In recent years, some theories and experiments show that a large number of non-classical phenomena that appeared in 

nature can be described in a concise and fruitful way by the fractional calculus [2,15,23,24,29,32,33,36,44] . Nowadays, frac- 

tional calculus and some mathematic models with fractional derivatives have become a powerful tool to model the particle 

transport in anomalous diffusion in various fields due to their good mathematical features. In practical applications, several 

types of the usual fractional derivatives, such as the Caputo derivative, Riemann–Liouville derivative, and Riesz fractional 

derivative are introduced [19,29] . For the tempered fractional calculus, which can be obtained by multiplying an exponential 

factor to the integrand function of the usual fractional calculus, and it is commonly used in truncated exponential power 

law description [25,34,41] . 

From the mathematical point of view, it is well known that the continuum time random walk is a very important and 

common mathematical model for particle kinetics, which incorporates waiting times and/or non-Gaussian jump distributions 

with divergent second moments to account for the anomalous jumps called Lévy flights [23,42] . It produces that the second 

moment diverges, that is, 〈 x 2 (t) 〉 = ∞ . The usually time and/or space fractional diffusion equation can be obtained by taking 

the continuous limit of such models [15,23] . However, from the point of view of an experimental study, many physical 

processes usually take place in bounded domains in finite times and have finite moments. Therefore, the divergent second 
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Table 1 

The absolute errors and convergence orders of Example 1 by the numerical differential formula (9) 

with n = 2 , λ = 1 / 500 . 

α h The absolute errors The convergence orders 

1.2 1 
10 

1.055602e-002 –
1 

12 
7.182623e-003 2.1118 

1 
14 

5.046779e-003 2.2894 
1 

16 
3.583863e-003 2.5635 

1 
18 

2.529330e-003 2.9587 

1.4 1 
10 

1.539565e-002 –
1 

12 
1.082498e-002 1.9319 

1 
14 

7.996273e-003 1.9648 
1 

16 
6.123688e-003 1.9981 

1 
18 

4.818992e-003 2.0342 

1.5 1 
10 

1.745507e-002 –
1 

12 
1.226204e-002 1.9368 

1 
14 

9.068450e-003 1.9572 
1 

16 
6.966119e-003 1.9751 

1 
18 

5.508809e-003 1.9927 

1.6 1 
10 

1.925169e-002 –
1 

12 
1.3490 02e-0 02 1.9507 

1 
14 

9.966179e-003 1.9640 
1 

16 
7.656185e-003 1.9747 

1 
18 

6.060484e-003 1.9844 

1.8 1 
10 

2.142076e-002 –
1 

12 
1.492405e-002 1.9821 

1 
14 

1.098727e-002 1.9866 
1 

16 
8.423419e-003 1.9900 

1 
18 

6.661189e-003 1.9928 
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Fig. 1. The comparison of the numerical solution with the exact solution for different order α by the numerical algorithm (13) with λ = 1 / 100 , τ = 

1 / 100 , h = 1 / 20 . 

moments are not available for such processes. In order to overcome these barriers, there are many different techniques 

are employed, such as in [26] , the truncated Lévy flights are developed by discarding the very large jumps. Two other 

ways are proposed by Sokolov et al. [31] , who add a high-order power-law factor, and Chechkin et al. [7] , who add a 

nonlinear friction term, which also leads to the finite second moments. At present, the most effective and popular method 

is exponentially tempering the probability of large jumps of Lévy flights, which results in tempered-stable Lévy processes 

with finite moments, and the corresponding tempered fractional differential equations are constructed [2,34] . It’s worth 
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