
Applied Mathematics and Computation 328 (2018) 171–188 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

Numerical solution of high-order Volterra–Fredholm 

integro-differential equations by using Legendre collocation 

method 

N. Rohaninasab, K. Maleknejad 

∗, R. Ezzati 

Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran 

a r t i c l e i n f o 

MSC: 

45J05 

65R20 

34K06 

34K28 

Keywords: 

Neutral and high-order Volterra–Fredholm 

integro-differential equation 

Legendre-spectral method 

Guass quadrature formula 

Convergence analysis 

a b s t r a c t 

The main purpose of this paper is to use the Legendre collocation spectral method for 

solving the high-order linear Volterra–Fredholm integro-differential equations under the 

mixed conditions. Avoiding integration of both sides of the equation, we expressed mixed 

conditions as equivalent integral equations, by adding the neutral term to the equation. 

Error analysis for approximate solution and approximate derivatives up to order k of the 

solution is obtained in both L 2 norm and L ∞ norm. To illustrate the accuracy of the spectral 

method, some numerical examples are presented. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Integro-differential equations provide an important tool for modeling physical phenomena in various fields of science 

and engineering. Many problems in Elecrtomagnetics [1–10] , Finance [11] , Chemistry, Astronomy, Biology, Economics, Po- 

tential theory, Electrostatics [12–16] , Mechanics [17–19] lead to these equations. The numerical solutions of such equations 

have been studied by many authors. A Taylor expansion approach for the nonlinear case has been presented by Yalçinbas 

[20] and also by Yalçinbas and Sezer [21] for the linear case. These two works are based on differentiating both sides of the 

integral equation n times, substituting the Taylor series for the unknown function in the resulting equation and the matrix 

relations. Shahmorad [22] considered Oritz and Samara’s operational approach to the Tau method for the differential part of 

the general case of Volterra–Fredholm Integro-Differential Equation (VFIDE). Akyuz-Dascioglu [23] applied Chebyshev poly- 

nomials to transform VFIDE and the conditions into the matrix equations. Babolian et al. [24] used Block Pulse Functions and 

its operational matrix of integration to convert a nonlinear of VFIDE into a nonlinear system of algebraic equations. Biazar 

and Eslami [25] proposed He’s Homotopy perturbation method for the nonlinear case of VFIDE. In [26] , the Volterra integro- 

differential equation up to order k is studied with initial conditions and error analysis is presented in L 2 norm and L ∞ norm. 

Here, we generalize the method presented in [26] , to solve Volterra–Fredholm integro-differential equation of order k under 

mixed conditions. The obtained error analysis is similar to [26] . Now, this paper considers the following high-order VFIDE 

m ∑ 

k =0 

p k y 
(k ) (x ) = f (x ) + λ1 

∫ x 

a 

K 1 (x, s ) y (s ) ds + λ2 

∫ b 

a 

K 2 (x, s ) y (s ) ds , (1) 
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with the mixed conditions 

m −1 ∑ 

k =0 

a jk y 
(k ) (a ) + b jk y 

(k ) (b) + c jk y 
(k ) (c) = μ j , 0 ≤ j ≤ m − 1 , a ≤ c ≤ b, (2) 

where y ( x ) is an unknown function, K 1 ( x , s ), K 2 ( x , s ) and f ( x ) are analytical functions that have suitable derivatives on D = 

{ (x, s ) : a ≤ s ≤ x ≤ b} and [ a , b ], respectively. Also p k , λ1 , λ2 , a jk , b jk , c jk and μ j ( j = 0 , . . . , m − 1) are constants. 

In order to use the Guass-quadrature rules, we will transfer the problem (1) and (2) to an equivalent problem in [ −1 , 1] . 

We use the change of variable 

x = 

b − a 

2 

τ + 

b + a 

2 

, τ ∈ [ −1 , 1] . 

To rewrite Eqs. (1) and (2) as follows: 

m ∑ 

k =0 

q k u 

(k ) (τ ) = g(τ ) + λ1 

∫ b−a 
2 τ+ b+ a 

2 

a 

K 1 

(
b − a 

2 

τ + 

b + a 

2 

, s 

)
y (s ) ds 

+ λ2 

∫ b 

a 

K 2 

(
b − a 

2 

τ + 

b + a 

2 

, s 

)
y (s ) ds , (3) 

m −1 ∑ 

k =0 

(
2 

b − a 

)k [
a jk u 

(k ) (−1) + b jk u 

(k ) (1) + c jk u 

(k ) (ρ) 
]

= μ j , 0 ≤ j ≤ m − 1 , (4) 

in which 

u (τ ) = y 

(
b − a 

2 

τ + 

b + a 

2 

)
, g(τ ) = f 

(
b − a 

2 

τ + 

b + a 

2 

)
, 

q k = 

(
2 

b − a 

)k 

p k , ρ = 

2 c − (b + a ) 

b − a 
. 

Now, to transfer the integration interval [ a, b−a 
2 τ + 

b+ a 
2 ] to the [ −1 , τ ] , we make a linear transformation 

s = 

b − a 

2 

η + 

b + a 

2 

, η ∈ [ −1 , τ ] . 

Then Eq. (3) becomes 

m ∑ 

k =0 

q k u 

(k ) (τ ) = g(τ ) + δ1 

∫ τ

−1 ̂

 K 1 (τ, η) u (η) dη + δ2 

∫ 1 

−1 ̂

 K 2 (τ, θ ) u (θ ) dθ, (5) 

where ̂ K 1 (τ, η) = K 1 

(
b−a 

2 τ + 

b+ a 
2 , b−a 

2 η + 

b+ a 
2 

)
, δ1 = 

b−a 
2 λ1 , δ2 = 

b−a 
2 λ2 , ̂ K 2 (τ, θ ) = K 2 

(
b−a 

2 τ + 

b+ a 
2 , b−a 

2 θ + 

b+ a 
2 

)
. 

2. Legendre-colloction method 

In this section, we describe the process of solving the problems of (4) and (5) on domain [ −1 , 1] . A Sturm–Liouville 

problem is an eigenvalue problem of the form 

−(pu 

′ ) ′ + qu = λwu in the interv al (−1 , 1) . (6) 

The Legendre polynomials L k (x ) , k = 0 , 1 , . . . , are the eigenfunctions of the singular Sturm–Liouville problem 

((1 − x 2 ) L ′ k (x )) ′ + k (k + 1) L k (x ) = 0 , (7) 

which is (6) with p(x ) = 1 − x 2 , q (x ) = 0 and w (x ) = 1 . The set of { L k (x ) } ∞ 

k =0 
forms a complete L 2 orthogonal system in 

(−1 , 1) . Let the collocation points be (N + 1) Legendre–Gauss, or Gauss–Radau, or Gauss–Lobatto points, { x i } N i =0 
with the 

corresponding weights, { w i } N i =0 
. Similarly [26] , we restate the mixed conditions (4) as an equivalent integral equations. If we 

replace 

u 

(k ) (τ ) = u 

(k ) (−1) + 

∫ τ

−1 

u 

(k +1) (η) d(η) , (8) 

u 

(k ) (τ ) = u 

(k ) (1) −
∫ 1 

τ
u 

(k +1) (η) d(η) , (9) 

u 

(k ) (τ ) = u 

(k ) (ρ) + 

∫ τ

ρ
u 

(k +1) (η) d(η) , (10) 
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