
Applied Mathematics and Computation 327 (2018) 8–21 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

Wavelet Galerkin method for fourth order linear and 

nonlinear differential equations 

Gopal Priyadarshi ∗, B.V. Rathish Kumar 

Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Uttar Pradesh, India 

a r t i c l e i n f o 

MSC: 

65T60 

65C30 

31A30 

Keywords: 

Daubechies wavelet 

2-term connection coefficients 

Periodic scaling function 

Multiresolution analysis 

Wavelet Galerkin method 

a b s t r a c t 

In this paper, we propose a wavelet Galerkin method for fourth order linear and nonlin- 

ear differential equations using compactly supported Daubechies wavelets. 2-term connec- 

tion coefficients have been effectively used for a computationally economical evaluation of 

higher order derivatives. The orthogonality and compact support properties of basis func- 

tions lead to highly sparse linear systems. The quasilinearization strategy is effectively em- 

ployed in dealing with wavelet coefficients of nonlinear problems. The stability and the 

convergence analysis, in the form of error analysis, have been carried out. An efficient 

compression algorithm is proposed to reduce the computational cost of the method. Fi- 

nally, the method is tested on several examples and found to be in good agreement with 

exact solution. 
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1. Introduction 

In the last few years, there has been an increased interest in the application of Daubechies wavelets as bases to solve 

partial differential equations [1–6] . Daubechies scaling function with multiresolution analysis theory gives rise to Daubechies 
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wavelet. These wavelet bases have various properties such as orthogonality, compact support, arbitrary regularity and high 

order vanishing moments. These properties make wavelets natural choice in fields like signal processing, image process- 

ing, data compression, acoustics, seismology, nuclear engineering and biomedical engineering. In particular, these properties 

make wavelets efficient bases to solve differential and integral equations. 

In 1990, Glowinski et al. [1] applied wavelet as a basis in variational setting to solve linear and nonlinear ordinary dif- 

ferential equations in one dimension. Amaratunga et al. [2] considered wavelet Galerkin technique to solve one dimensional 

partial differential equations with periodic and Dirichlet boundary conditions. Their investigations indicate that wavelet 

method is a strong competitor to the traditional methods like spectral method, finite element method, at least for those 

problems having simple domain. In 1993, Qian and Weiss [3,4] applied wavelet Galerkin method to solve elliptic partial dif- 

ferential equations in two dimension. Rathish and Mehra [5,6] applied this method to solve parabolic and hyperbolic partial 

differential equations with periodic boundary conditions. 

In this paper, we propose a wavelet Galerkin method to solve higher order linear and nonlinear differential equations 

with periodic boundary conditions. These equations are generalization of biharmonic equation which appear in many en- 

gineering applications, such as the deformation of a thin plate and motion of a fluid. Nonlinear fourth order differential 

equations with periodic boundary conditions have many applications in dynamical systems. These periodic equations are 

theoretically investigated in [13,14] and references therein. Numerically these equations have been solved using Haar wavelet 

[11,12] , but this wavelet is not smooth. To get the higher order accuracy, we need smooth functions as basis elements oth- 

erwise we will have to go to higher resolution level which increase the computational cost exponentially. To overcome this 

difficulty we apply Daubechies wavelets as bases to solve differential equations. Since we have exact value of 2-term con- 

nection coefficients, it is very easy to handle fourth order derivative when compared to other methods like finite element 

method, spectral method etc. Orthogonality and compact support of basis functions make the global matrix highly sparse. In 

particular, these properties of basis functions reduce the computational cost. Handling nonlinear term is always an important 

issue in nonlinear problems. In the nonlinear problem we obtain nonlinear wavelet coefficients which we have effectively 

calculated using quasilinearization technique. We, in fact, exploit the property of wavelet coefficients of linear equation in 

obtaining wavelet coefficients for nonlinear counterpart. To reduce the computational cost, we have proposed a compression 

algorithm. 

The content of this paper is organized as follows. In Section 2 , we give a brief introduction of Daubechies wavelets 

and 2-term connection coefficients. In Section 3 , we describe wavelet Galerkin method for linear differential equations. In 

Section 4 , we describe error and stability estimate. Various numerical examples with logarithmic scale error have been 

presented in Section 5 . In Section 6 , we propose wavelet Galerkin method for nonlinear differential equations. Numerical 

examples and logarithmic scale error have been presented. An efficient compression algorithm is proposed in this section. 

2. Basic background 

Multiresolution analysis is an important tool to construct an orthonormal basis of L 2 (R ) . Daubechies used this tool to 

construct a class of compactly supported wavelets with arbitrary regularity. 

Definition 2.1 (see [9] ) . A multiresolution analysis (MRA) of L 2 (R ) consists of a sequence of closed subspaces V J ( J ∈ Z ) of 

L 2 (R ) satisfying 

(i) V J ⊂ V J+1 for all J ∈ Z ;
(ii) f ∈ V J ⇔ f (2(·)) ∈ V J+1 for all J ∈ Z ;

(iii) 
⋂ 

J∈ Z 
V J = { 0 };

(iv) 
⋃ 

J∈ Z 
V J = L 2 (R ) ;

(v) There exists a function φ ∈ V 0 such that { φ(· − k ) : k ∈ Z } is an orthonormal basis for V 0 . 

The function φ is known as scaling function. 

Approximation space V J is defined as 

V J = span { φJ,k (x ) ∈ L 2 (R ) | k ∈ Z } , 
where 

φJ,k (x ) = 2 

J/ 2 φ(2 

J x − k ) , J, k ∈ Z . 

Wavelet space W J is defined as the orthogonal complement of V J in V J+1 , i.e. 

V J ⊥ W J and V J+1 = V J + W J . 

Since φ( x ) ∈ V 0 ⊂ V 1 and ψ( x ) ∈ V 1 , we have two-scale relation 

φ(x ) = 

√ 

2 

D −1 ∑ 

k =0 

a k φ(2 x − k ) , 
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