On the [1,2]-domination number of generalized Petersen graphs

Lily Chen ${ }^{\text {a }}$, Yingbin Ma ${ }^{\text {b }}$, Yongtang Shi ${ }^{\text {c,* }}$, Yan Zhao ${ }^{\text {d }}$
a School of Mathematics Science, Huaqiao University, Quanzhou 362021, P R China
${ }^{\mathrm{b}}$ College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, P R China
${ }^{\text {c }}$ Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, P R China
${ }^{\mathrm{d}}$ Department of Mathematics, Taizhou University, Taizhou 225300, P R China

A R T I C L E I N F O

Keywords:

Domination number
[1,2]-domination number
Generalized Petersen graph

Abstract

A dominating set in a graph $G=(V, E)$ is a subset S of V such that $N[S]=V$, that is, each vertex of G either belongs to S or is adjacent to at least one vertex in S. The minimum cardinality of a dominating set in G is called the domination number, denoted by $\gamma(G)$. A subset S of V is a [1,2]-set if, for every vertex $v \in V \backslash S, v$ is adjacent to at least one but no more than two vertices in S. The [1,2]-domination number of a graph G, denoted by $\gamma_{[1,2]}(G)$, is the minimum cardinality of a [1, 2]-set of Chellali et al. gave some bounds for $\gamma_{[1,2]}(G)$ and proposed the following problem: which graphs satisfy $\gamma(G)=\gamma_{[1,2]}(G)$. Ebrahimi et al. determined the exact value of the domination number for generalized Pe tersen graphs $P(n, k)$ when $k \in\{1,2,3\}$. In this paper, we determine the exact values of $\gamma_{[1,2]}(P(n, k))$ for $k \in\{1,2,3\}$. We also show that $\gamma_{[1,2]}(P(n, k))=\gamma(P(n, k))$ for $k=1$ and $k=3$, respectively, while for $k=2, \gamma_{[1,2]}(P(n, k)) \neq \gamma(P(n, k))$ except for $n=6,7,9,12$.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, all graphs we considered are simple, finite and undirected. We refer to [1] for the undefined notation and terminology.

Let $G=(V, E)$ be a graph. For $v \in V$, the open neighborhood of v, denoted by $N(v)$, is the set of all vertices adjacent to v. Denote by, $N[v]=\{v\} \cup N(v)$, the closed neighborhood of v. For any vertex set $S \subseteq V$, the open neighborhood of S is defined as $N(S)=\bigcup_{v \in S} N(v)$, while the closed neighborhood of S is the set $N[S]=\bigcup_{v \in S} N[v]$.

A dominating set in G is a subset S of V such that $N[S]=V$, that is, each vertex of G either belongs to S or is adjacent to at least one vertex in S. The minimum cardinality of a dominating set in G is called the domination number of G and denoted $\gamma(G)$. Dominating set problems have many applications in numerous facility location problems and social networks. We refer the readers to the two monographs [6,7] for more information on the history and results of the dominating set problem.

The concept of [1,2]-domination number was first investigated by Dejter [4]. Let S be a subset of V in a graph $G=(V, E)$, we define S to be a [1,2]-set if, for every vertex $v \in V \backslash S, v$ is adjacent to at least one but no more than two vertices in S. The minimum cardinality of a [1,2]-set in G is called the [1,2]-domination number, denoted by $\gamma_{[1,2]}(G)$. A [1,2]-set with

[^0]cardinality $\gamma_{[1,2]}(G)$ is called a $\gamma_{[1,2]}(G)$-set. Obviously, if S is a [1,2]-set, then it is also a dominating set, but a dominating set may not be a [1,2]-set, which implies $\gamma_{[1,2]}(G) \geq \gamma(G)$.

In [2], Chellali et al. studied [1,2]-domination numbers of graphs and gave some bounds for $\gamma_{[1,2]}(G)$. At the end of their paper, a number of open problems are proposed, some of which have already been solved by Yang et al. [9]. We state one of the problems as follows.

Problem 1 (Question 8 of [2]). For which graphs G is $\gamma(G)=\gamma_{[1,2]}(G)$?
The generalized Petersen graph, received this name by Watkins [8], is a generalization of the classic Petersen graph. (The concept was first defined by Coxeter [3] but not with that name). For each n and $k(n>2 k)$, the generalized Petersen graph $P(n, k)$ is a graph on $2 n$ vertices, where the vertex set is the union of $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and the edge set is $\left\{u_{i} u_{i+1}, u_{i} v_{i}, v_{i} v_{i+k}: 1 \leq i \leq n\right.$, subscripts modulo $\left.n\right\}$. Observe that the classic Petersen graph is exactly $P(5,2)$.

Ebrahimi et al. [5] determined the exact values of the domination numbers of three classes of generalized Petersen graphs.
Theorem 1 [5]. If $n \geq 3$, then we have

$$
\gamma(P(n, 1))= \begin{cases}\frac{n}{2}+1, & \text { if } n \equiv 2(\bmod 4) \\ \left\lceil\frac{n}{2}\right\rceil, & \text { otherwise }\end{cases}
$$

where $\lceil x\rceil$ denotes the smallest integer greater than or equal to x.
Theorem 2 [5]. For $n \geq 5$ we have $\gamma(P(n, 2))=\left\lceil\frac{3 n}{5}\right\rceil$.
Theorem 3 [5]. For $n \geq 7$ we have

$$
\gamma(P(n, 3))= \begin{cases}\frac{n}{2}+1, & \text { if } n \equiv 2(\bmod 4) \\ \left\lceil\frac{n}{2}\right\rceil, & \text { if } n \equiv 0,1(\bmod 4) \text { or } n=11 \\ \left\lceil\frac{n}{2}\right\rceil+1, & \text { if } n \equiv 3(\bmod 4), n \neq 11\end{cases}
$$

In this paper, we focus on the [1,2]-domination numbers of these three classes of generalized Petersen graphs. In Section 2 we determine the exact values of $\gamma_{[1,2]}(P(n, 1))$ and $\gamma_{[1,2]}(P(n, 3))$, which are equal to the domination numbers of $P(n, 1)$ and $P(n, 3)$, respectively. In Section 3 we present the exact value of $\gamma_{[1,2]}(P(n, 2))$. Finally, we conclude the paper with some remarks.

2. [1,2]-domination numbers of $P(n, 1)$ and $P(n, 3)$

In this section, we establish the exact values of the [1,2]-domination numbers of $P(n, 1)$ and $P(n, 3)$, repectively.
Theorem 4. If $n \geq 3$, then $\gamma_{[1,2]}(P(n, 1))= \begin{cases}\frac{n}{2}+1, & \text { if } n \equiv 2(\bmod 4), \\ \left\lceil\frac{n}{2}\right\rceil, & \text { otherwise. }\end{cases}$
Proof. First, we will construct a [1,2]-set S of $P(n, 1)$. We use two lines: in the first line there are values of vertices $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$, and in the second line there are values of vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, where u_{i} lies above v_{i} for all $i, 1 \leq i \leq n$. If the value of u_{i} is 1 , then $u_{i} \in S$; if the value of v_{i} is 1 , then $v_{i} \in S$.
(1) $n \equiv 0(\bmod 4)$:
$10001000 \ldots 1000$
$00100010 \ldots 0010$
(2) $n \equiv 1(\bmod 4):$

1000 1000... 10001
0010 0010 ... 00100
(3) $n \equiv 2(\bmod 4)$:

$$
10001000 \ldots 1000100100
$$

$00100010 \ldots 0010010010$
(4) $n \equiv 3(\bmod 4)$:
$10001000 \ldots 1000100$
$00100010 \ldots 0010001$
By the construction, one can easily check that S is indeed a [1,2]-set. Therefore,

$$
\gamma_{[1,2]}(P(n, 1)) \leq \begin{cases}\frac{n}{2}+1, & \text { if } n \equiv 2(\bmod 4) \\ \left\lceil\frac{n}{2}\right\rceil, & \text { otherwise }\end{cases}
$$

https://daneshyari.com/en/article/8901098

Download Persian Version:

https://daneshyari.com/article/8901098

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: lily60612@126.com (L. Chen), mayingbincw@htu.cn (Y. Ma), shi@nankai.edu.cn (Y. Shi), zhaoyan81.2008@163.com (Y. Zhao).

