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In the image reconstruction context the nonnegativity of the computed solution is often 

required. Conjugate Gradient ( CG ), used as a reliable regularization tool, may give solu- 

tions with negative entries, particularly when large nearly zero plateaus are present. The 

active constraints set, detected by projection onto the nonnegative orthant, turns out to 

be largely incomplete leading to poor effects on the accuracy of the reconstructed image. 

In this paper an inner-outer method based on CG is proposed to compute nonnegative re- 

constructed images with a strategy which enlarges subsequently the active constraints set. 

This method appears to be especially suitable for the reconstruction of images having large 

nearly zero backgrounds. The numerical experimentation validates the effectiveness of the 

proposed method when compared to other strategies for nonnegative reconstruction. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

A Fredholm integral equation of the first kind 

g(s ) = 

∫ ̂ K (s, t ) f (t ) dt (1) 

is often used for modeling the image formation process, where f ( t ) and g ( s ) represent a real object and its image, respec- 

tively. The kernel ̂ K (s, t) , called the point spread function (PSF) and assumed to be square integrable, represents the imaging 

system and is responsible for the blurring of the image. In practical applications the blurred image g ( s ) is not available, being 

replaced by a finite set g of measured quantities, and is degraded by the noise which affects the process of image record- 

ing. Hence the problem of restoring f ( t ) from g is an ill-posed problem. The linear system obtained by the discretization of 

(1) inherits this feature, in the sense that the resulting matrix is severely ill-conditioned, and regularization methods must 

be used to solve it [2,14,24] . This kind of problem arises for example in the reconstruction of astronomical images taken by 

a telescope and of medical and microscopy images. 

One of the main features of the problem is the nonnegativity of the functions involved in (1) . When discretized, the 

equation leads to a linear problem whose solution is constrained to be nonnegative. Iterative methods applied as regulariza- 

tion techniques may give solutions with negative entries. A projection onto the nonnegative orthant may have poor effects 
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on the accuracy of the reconstructed image. In this paper an inner-outer method based on CG is proposed to compute non- 

negative reconstructed images with a strategy which enlarges subsequently the active constraints set. This method appears 

to be especially suitable for images having large zero backgrounds. For this type of problems, one naturally wonders if the 

zeros of the original image are correctly reconstructed. As a matter of fact, an algorithm can fail by putting to zero nonzero 

values of the original image (false positive) or by giving nonzero values in correspondence to zero values of the original 

image (false negative). This behavior will be analyzed using the well-known measures of Information Retrieval, namely the 

F 1 score [22] , which takes into account both types of errors. 

The outline of the paper is the following: first, in Section 2 the problem under consideration is introduced and in 

Section 3 some strategies for nonnegative regularization present in the literature are recalled. In Section 4 our proposed 

inner-outer algorithm is motivated and described. In Section 5 the results of a numerical experimentation which compares 

the performance of our algorithm with those of four chosen methods are presented and discussed. 

Notation : Throughout the paper, ‖ v ‖ denotes the Euclidean norm of the vector v , i.e. ‖ v ‖ 2 = v T v . The elementwise mul- 

tiplication and division between two vectors are denoted by � and �. 

2. The problem 

Let ̂ b = A ̂

 x be the discretized version of Eq. (1) . In image reconstruction problems the N -vector ̂ x stores columnwise 

the pixels of an n × n original object, with N = n 2 , and 

̂ b analogously stores the blurred image. The imaging system is 

represented by a large not necessarily square matrix A , often severely ill-conditioned with singular values decaying to zero 

without significant gap to indicate numerical rank. The matrix A might not be explicitly available, as long as the products 

A x and A 

T x are computable for any vector x . A common special case is the one which occurs when the PSF is bandlimited 

space invariant, i.e. invariant with respect to translations and with a bounded support, and A is a square 2-level Toeplitz 

matrix with a limited bandwidth. Moreover, it may happen that the image has sufficiently large zero background along the 

boundary, so that periodic boundary conditions can be safely imposed. In this case A becomes a 2-level circulant matrix 

and the matrix-by-vector product can be computed by low cost Fourier transforms. This is the structure we assume for our 

numerical examples, but the proposed algorithm can be applied equally well to general matrices A . 

In practical problems vector ̂ b is not exactly known, because it is contaminated by measurement inaccuracies or dis- 

cretization. Hence only a noisy image b = ̂

 b + η is available, where the noise level is measured by 

η = 

‖ b −̂ b ‖ 

‖ ̂

 b ‖ 

, (2) 

and in some cases can be roughly estimated. The system to be solved is thus 

A x = b . (3) 

In this paper we consider the case where the entries of the noise vector η are normally distributed with zero mean and 

normalized in such a way that η ranges in a given interval. 

The i th component of the vectors ̂  x , ̂  b and b represents respectively the light intensity or the radiation emitted by the 

i th pixel of the object, arriving at the i th pixel of the blurred image and recorded in the i th pixel of the noisy image. The 

component a ij of matrix A measures the fraction of the light or of the rays emitted by the i th pixel of the object which 

arrives at the j th pixel of the image. Because of the ill-conditioning of A and of the presence of the noise, the solution A 

† b 

of (3) , where A † is the Moore–Penrose generalized inverse, may be quite different from the original image ̂  x . 

All the quantities involved in the problem, i.e. A , ̂  x , ̂  b and b , are assumed componentwise nonnegative. Actually, when 

simulated test problems are considered for the experimentation, negative entries of b could arise corresponding to very 

small nonnegative entries of ̂ b . In this case the vector b is further projected onto the nonnegative orthant. Anyway, it is 

reasonable to expect the approximation of ̂  x obtained by solving (3) to be nonnegative. The constrained least squares ap- 

proximation to the solution ̂

 x is given by 

x ls = argmin 

x ≥0 

φ( x ) , where φ( x ) = 

1 

2 

‖ b − A x ‖ 

2 . (4) 

The gradient of φ( x ) is grad x φ( x ) = A 

T A x − A 

T b = −A 

T r , where r = b − A x is the residual vector. The function φ( x ) is convex 

and its minimum points are found by solving the system grad x φ( x ) = 0 , i.e. the so-called normal equations 

A 

T A x = A 

T b . (5) 

Due to the large dimension of system (5) and to the presence of the noise η, a regularization method must be employed, 

coupled with suitable strategies for enforcing nonnegativity. Iterative methods enjoying the semiconvergence property are 

often used. According to this property, an integer K exists for which the error attains a minimum. After the K th iteration, the 

computed vectors x k are progressively contaminated by the noise and move away from ̂

 x toward A 

† b which can be largely 

different from A 

† ̂ b . A good terminating procedure is hence needed to detect the correct index K where to stop the iteration. 

In the following we assume that both A x � = 0 and A 

T x � = 0 for any x ≥ 0 with x � = 0 , and that A e > 0 and A 

T e > 0 , where 

e is the vector of all ones (i.e. the sums by rows and columns of A are all nonzero). 
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