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In this paper, a simultaneous identification problem of the spacewise source term and the 

fractional order for a time-fractional diffusion equation is considered. Firstly, under some 

assumption and with two different kinds of observation data for one-dimensional and two- 

dimensional time-fractional diffusion equation, the unique results of the inverse problem 

are proven by the Laplace transformation method and analytic continuation technique. 

Then the inverse problems are transformed into Tikhonov type optimization problems, 

the existence of optimal solutions to the Tikhonov functional is proven. Finally, we adopt 

an alternating minimization algorithm to solve the optimization problems. The efficiency 

and stability of the inversion algorithm are tested by several one- and two-dimensional 

examples. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

Let � ⊂ R 

d be an open bounded domain with a smooth boundary ∂�, we consider the following time-fractional diffu- 

sion equation 

∂ αu (x, t) 

∂t α
= (Lu )(x, t) + F (x, t) , x ∈ �, t > 0 , (1) 

with homogeneous Neumann boundary condition 

∂u 

∂ n 

(x, t) = 0 , x ∈ ∂�, t > 0 , (2) 

and nonhomogeneous initial condition 

u (x, 0) = ϕ(x ) , x ∈ �, (3) 
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where −L is a symmetric uniformly elliptic operator defined by 

L (u ) = 

d ∑ 

i =1 

∂ 

∂x i 

( 

d ∑ 

j=1 

θi, j 

∂ 

∂x j 
u (x ) 

) 

− c(x ) u (x ) , 

where θi, j ∈ C 1 ( �) , θi, j = θ j,i , c(x ) ∈ C( �) , c(x ) ≥ 0 , ∀ x ∈ �, and there exists a constant v > 0 such that v 
∑ d 

i =1 ξ
2 
i 

≤∑ d 
i, j=1 θi, j (x ) ξi ξ j , ∀ x ∈ �, ξ ∈ R 

d . If d = 1 , we take � = (0 , l) , and x = 0 , l are the boundary points of the interval [0, l ]. 

If d = 2 , � ⊂ R 

2 is a bounded domain with smooth boundary ∂�. ∂u 
∂n 

| ∂� represents the outward normal derivative along 

the boundary ∂�. n is the outward unit normal vector of boundary ∂�. Here, ∂ αu (x,t) 
∂t α

is the Caputo fractional derivative 

defined by 

∂ αu (x, t) 

∂t α
= 

1 

�(1 − α) 

∫ t 

0 

(t − η) 
−α ∂u (x, η) 

∂η
d η, 0 < α < 1 , 

where �( · ) is a Gamma function. 

The time-fractional diffusion equation has gained much attention among mathematicians during the last few decades, 

owing to its applicability of describing the anomalous diffusion processes well, especially the subdiffusion process, in which 

the mean squares variance grows slower than that in a Gaussian process for large time. There are extensive references on 

the theoretical analysis for time-fractional diffusion equations. In [1] , the uniqueness of a classical solution was proved by a 

maximum principle. Luchko [2] gave the generalized solution to (1) with F = 0 with the help of the Mittag–Leffler function 

and proved the unique existence result. Sakamoto and Yamamoto [3] investigated comprehensively the well-posedness and 

the long-time asymptotic behavior of the solution for an initial boundary value problem. It shows that the spatial regularity 

of the solution is only moderately improved from that of the initial value, and the solution decays with order t −a for large 

time. Gorenlfo et al. [4] proposed a definition of the Caputo derivative in the fractional Sobolev spaces and proved the 

maximal regularity of the solutions to some initial boundary value problems for the time-fractional diffusion equation with 

the Caputo derivative in the fractional Sobolev spaces. 

Accompanied by the extensive researches of the time-fractional diffusion equation direct problem, the related inverse 

problems have attracted the interest of many researchers. Numerically, the backward problem for the time-fractional dif- 

fusion equation was considered by quasi-reversibility method, total variation regularization method, quasi-boundary value 

method, respectively in [5–7] . The uniqueness theories for identifying the space-dependent/time-dependent source term 

were established by Laplace transformation method, analytic continuation technique, analytic Fredholm theory, the max- 

imum principle, respectively, in [8,9] . More recently, Wei et al. [10] proved the uniqueness and a stability estimate for 

the inverse time-dependent source problem from the boundary Cauchy data in a multidimensional time-fractional diffu- 

sion equation. Ruan and Wang [11] established conditional stability for an inverse problem of identifying a time-dependent 

source term for time fractional diffusion equation by using nonlocal measurement data and derived a priori convergence 

rate of regularized solutions by choosing a suitable mollification parameter. Jiang et al. [12] established a weak unique 

continuation property for time-fractional diffusion–advection equations by using the Laplace transform and the unique con- 

tinuation properties for elliptic and parabolic equations, and proved the uniqueness of determining the spatial component 

in the source term by interior measurements. Liu and Zhang [13] established the multiple logarithmic stability of recon- 

structing the temporal component in the source term for time-fractional diffusion equations based on a reverse convolution 

inequality. Numerically, the inverse source problems were considered by quasi-boundary value method, reproducing kernel 

Hilbert space method, fixed point iteration method and Tikhonov regularization method, respectively, in [14–17] . For other 

inverse problems of the time-fractional diffusion equation, Li and Yamamoto [18] proved the uniqueness of determining the 

orders of multi-term time-fractional diffusion equation by the technique of eigenfunction expansion and Laplace transform. 

Jin and Rundell proposed an algorithm of the quasi-Newton type to recover a spatially varying potential coefficient in a 

time-fractional diffusion equation in [19] . Compared with the one function or one parameter identification problem, the 

researches of the simultaneous inversion problem for the time-fractional diffusion equation are not studied enough. Cheng 

et al. [20] established the uniqueness for identifying space-dependent diffusion coefficient and fractional order with Dirac 

delta function as an initial term by the Gelfand–Levitan theory. The uniqueness of simultaneously identifying the fractional 

order and the space-dependent diffusion coefficient in a one-dimensional time-fractional diffusion equation was proved 

by using boundary measurements in [21] . In [22] , Sun and Wei proved the uniqueness of simultaneously identifying the 

fractional order and the zero order coefficient in one-dimensional time-fractional diffusion equation by the Laplace trans- 

formation and Gelfand–Levitan theory. Liu et al. [23] determined the initial status and heat flux simultaneously with the 

boundary observation data by using the Laplace transform and the unique extension technique in one-dimensional time- 

fractional diffusion equation. In [24] , Ruan et al. proved the uniqueness of recovering the initial function and source term 

simultaneously by the method of eigenfunction expansion with two moment observation data. 

We assume the source term F ( x , t ) has the structure of temporal and spatial separation, i.e., F (x, t) = p(t) f (x ) . In this 

paper, we consider the uniqueness for identifying fractional order α and source term f ( x ) simultaneously for the cases of 

d = 1 and d = 2 by different observation data, that is, if d = 1 , the observation data is 

g(t) = u (0 , t) , t ∈ (0 , T ] , (4) 
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