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a b s t r a c t 

In this work, we investigate numerically a nonlinear hyperbolic partial differential equa- 

tion with space fractional derivatives of the Riesz type. The model under consideration 

generalizes various nonlinear wave equations, including the sine-Gordon and the nonlin- 

ear Klein–Gordon models. The system considered in this work is conservative when ho- 

mogeneous Dirichlet boundary conditions are imposed. Motivated by this fact, we propose 

a finite-difference method based on fractional centered differences that is capable of pre- 

serving the discrete energy of the system. The method under consideration is a nonlinear 

implicit scheme which has various numerical properties. Among the most interesting nu- 

merical features, we show that the methodology is consistent of second order in time and 

fourth order in space. Moreover, we show that the technique is stable and convergent. 

Some numerical simulations show that the method is capable of preserving the energy of 

the discrete system. This characteristic of the technique is in obvious agreement with the 

properties of its continuous counterpart. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The design of energy-preserving finite-difference schemes for nonlinear partial differential equations has been an impor- 

tant topic of research since the early studies by L. Vázquez and coworkers in the 1970s. Many nonlinear partial differential 

equations are known to posses energy functionals that are preserved under suitable boundary conditions, including mod- 

els like the Schrödinger, the sine-Gordon and the nonlinear Klein–Gordon equations from relativistic quantum mechanics, 

just to mention some wave equations of physical relevance. Motivated by this fact, several groups of researchers have de- 

veloped reliable numerical techniques to approximate the solutions of these and other nonlinear conservative systems as 

well as the constant energy functionals associated to them. The most notable contributions to the state of the art were the 

energy-preserving finite-difference methodologies proposed for the Schrödinger [1] , the sine-Gordon [2,3] and the nonlin- 

ear Klein–Gordon regimes [4] . In fact, those works (among other important papers of those decades) still continue to be 
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sources of motivation for the numerical investigation of nonlinear wave equations [5] . Later on, these studies were extended 

to account for more general potential functions. In this way, the investigation of energy- or dissipation-preserving methods 

was extended to more complicated regimes. At the same time, a solid basis for their design was also formulated by D. Furi- 

hata and coworkers in various seminal papers [6,7] . In many senses, these works constitute the formal birth of the discrete 

variational derivative method, whose use has been widely accepted in the specialized literature [8] . 

In general, the use of numerical methods that preserve invariants obeys various physical and mathematical reasons, in- 

cluding the need to establish analytically some numerical properties. On physical grounds, it is highly desirable to have 

at hand reliable numerical techniques that resemble the dynamics of the continuous models of interest. In that sense, the 

early reports by L. Vázquez and co-authors [4] communicated the physical need to develop methods with both numeri- 

cal and meaningful physical properties. Those reports have been perhaps some of the first effort s in the investigation of 

structure-preserving methods for partial differential equations or, as R. E. Mickens calls them [9] , dynamically consistent 

numerical techniques. It is worth mentioning that the development of structure-preserving methods has been a fruitful 

avenue of research in numerical analysis. For instance, this approach has been followed in the design of general multi- 

symplectic formulations of partial differential equations where the preservation of both energy and momentum is crucial 

[10] , in the design of energy-conserving finite-difference schemes for the simulation of musical instrument contact dynamics 

[11] , in the approximation of solutions of particular models of mathematical physics such as the “good” Boussinesq equation 

[12] or the Kolmogorov–Fokker–Planck model [13] , in the construction of efficient energy-preserving integrators for oscilla- 

tory Hamiltonian systems [14] , in the design of multi-consistent algorithms for the multi-species Rosenbluth–Fokker–Planck 

equation [15] , in the proposal of new energy-preserving Birkhoffian multi-symplectic methods for Maxwell’s equations with 

dissipative terms [16] , in the development of wavenumber-preserving schemes for solving Maxwell’s equations in curvilinear 

non-staggered grids [17] and in the design of energy/dissipation-preserving methods for partial differential equations using 

the average vector field method [18,19] , just to mention some examples. 

It is important to note that the notions of ‘structure preservation’ or ‘dynamic consistency’ not only refer to the capa- 

bility of numerical methods to preserve analogues of physical quantities (like energy, momentum, mass, etc.). In a broader 

sense, these concepts also refer to the capacity of a computational technique to preserve mathematical features of the rel- 

evant solutions of continuous systems that naturally arise from the physical context of the problem. A typical example 

is the condition of positivity (or non-negativity) of solutions, which is a natural requirement for problems in which the 

variables of interest are measured in absolute scales [20,21] . Boundedness is another desirable characteristic in physical 

problems where there are natural limitations of growth, particularly in models that describe the dynamics of populations 

under limited resources and space [22,23] or transport phenomena in turbulent flows. Another mathematical feature of 

some solutions is the monotonicity, which is important in the approximation of equations whose solution is a cumulative 

distribution of probability [24] or some traveling waves [25] . In the present work, however, we will consider a nonlinear 

conservative wave equation with Riesz space-fractional derivatives for which some positive energy functional is preserved 

under suitable boundary conditions. Motivated by the early works by L. Vázquez [2] and D. Furihata [6] , we will design a 

structure-preserving method that conserves the energy of the system. More concretely, our approach will be based on the 

use of fractional centered differences, and we will provide discrete schemes for both the solution of the problem and the 

total energy of the system. We will show here that the total energy of the discretized system is likewise a positive function 

of the time. The preserved quantities will be used then to show that the method proposed in this manuscript is not only 

consistent but also stable and convergent of second order in time and fourth order in space. Some simulations will show 

the capability of the method to preserve the energy under the analytic conditions derived in this work. 

Beforehand, we must clarify that the literature also has reports of methods for partial differential equations with frac- 

tional derivatives that do not necessarily preserve the structure of the solutions. Indeed. most of the methods proposed 

are numerically efficient techniques. For example, some numerical methods have been proposed to solve the Fokker–Planck 

equation with space-fractional derivatives [26] , some computational techniques have been used to approximate the solutions 

of Riesz fractional advection–dispersion equations [27] . Other numerical methods have been designed for the variable-order 

fractional advection-diffusion equation with a nonlinear source term [28] , to solve the multi-term time-fractional wave- 

diffusion equation [29] , to approximate effectively the time-space fractional Fokker–Planck equation with a nonlinear source 

term [30] and to solve the space- and time-fractional Bloch–Torrey equation through an implicit, stable and convergent nu- 

merical method [31] . As a conclusion, many reports in the literature show that the development of numerical techniques 

to solve fractional partial differential equations (both parabolic and hyperbolic) has been a fruitful avenue of research, but 

very few reports have striven to design structure-preserving techniques for those systems. The advantage of the technique 

that we will propose in this work lies in the fact that the preservation of the energy provides a physical meaningfulness to 

our results. For instance, some physical applications of our methodology may be proposed to various nonlinear phenomena, 

included the process of nonlinear supratransmission in fractional systems and chains with long-range interactions [32,33] . 

This manuscript is structured as follows. The nonlinear conservative wave equation with Riesz space-fractional derivatives 

that motivates our investigation is presented in Section 2 , together with the relevant definitions of the fractional differential 

operators and an energy functional proposed in the literature [34] . We show therein that the initial-boundary-value problem 

under investigation is a conservative system under suitable analytic conditions. Section 3 introduces the discrete nomencla- 

ture and the method to solve numerically the problem under investigation. The concept of fractional centered differences 

will be recalled therein and some useful lemmas will be proved in the way. The most important physical properties of 

the method will be established in that section. Concretely, we will establish the capability of the finite-difference scheme to 
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