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a b s t r a c t 

‘In this paper, a finite element method is presented to approximate Maxwell–Polynomial 

Chaos(PC) Debye model in two spatial dimensions. The existence and uniqueness of the 

weak solutions are presented firstly according with the differential equations by using the 

Laplace transform. Then the property of energy decay with respect to the time is derived. 

Next, the lowest Nédélec–Raviart–Thomas element is chosen in spatial discrete scheme 

and the Crank–Nicolson scheme is employed in time discrete scheme. The stability of full- 

discrete scheme is explored before an error estimate of accuracy O (�t 2 + h ) is proved un- 

der the L 2 −norm. Numerical experiment is demonstrated for showing the correctness of 

the results. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

For the time propagation of electromagnetic fields, Maxwell–Debye model contains Maxwells equations and polariza- 

tion models in simple Debye medium, which describes the material response to the fields. Such derivation tacitly is as- 

sumed that one has similar individual (molecular, dipole, etc.) parameters, that is, all dipoles, molecules, electron clouds, 

etc., have the same relaxation parameters, plasma frequencies, etc. Historically, such these models have often not performed 

well when trying to compare models with experimental data [1,18] . In order to account for uncertainty in the polarization 

mechanisms, we allow for a distribution of relaxation parameters, and subsequently refer to these types of materials as 

polydispersive. Maxwell–Random Debye model [11] can be derived in terms of a distribution-dependent dielectric response 

function. One needs an efficient method for the computation of the expected value of the random polarization. Therefore, a 

spectral method in random space can be employed, generally called polynomial chaos [19–21] , and the model is written by 

Maxwell–PC Debye. 

In the time domain simulation, the applications of time-domain finite element methods(TDFEM) for dispersive media 

was initialed in [2] . The discontinuous Galerkin methods(DG) for modeling dispersive media was developed in [3] . An in- 

terior penalty discontinuous Galerkin method for the time-dependent Maxwells equations in cold plasma was presented 

in [4] and the error analysis was carried out. The Crank–Nicolson scheme to approximate the electric field equation by 

Nédélec e dge elements was developed and proved to be optimal convergent in energy norm in [5] . FEMs for the time- 

harmonic Maxwells equations in non-convex polygon [6] was explored. They also investigated TDFEM for the cole-cole 

dispersive medium model, which contains Maxwells equations and a fraction time derivative term [7] . The mathematical 
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model was established which described the electromagnetic interrogation of dielectric materials in [8] . At the same time 

the well-posedness of the system and the regularity of the solution was addressed. 

The finite-difference time-domain methods (FDTD) [9–12] is employed frequently. Yee’s scheme was proved firstly in 

[13] . For dispersive media by FDTD were examined in [14–17] . In order to avoid the difficulty of implementing the Cole–Cole 

model, a representation of dispersive mechanisms using distributions of parameters within the Debye model was presented 

in [11,18] . Then modify the standard FDTD scheme to allow for distributions of dielectric parameters [24] in a polarization 

model, and approximate the solution by using the Polynomial Chaos expansion method. The first polynomial chaos for the 

Random Debye model was considered in [23] . An inverse problem formulation to determine the distribution of parameters 

was formulated in [11] . 

In this paper, we recall the 2D Maxwell–PC Debye model and present the existence and uniqueness of the weak solu- 

tion according with the differential equations by using the Laplace transform. By define the energy norm, we can derive a 

property of energy decay with respect to the time. Then, we give the stability of the Crank–Nicolson full-discrete scheme. 

Furthermore, the error estimate of accuracy O (�t 2 + h ) is proved under the L 2 −norm. Finally, numerical experiment is 

present for showing the correctness of the results. 

The rest of this paper is organized as follows. In Section 2 , we firstly recall Maxwell–Random Debye model, which is 

based on the relaxation time τ modeled as a random variable. And Maxwell–PC Debye model is stated by using numeri- 

cal approximation of Polynomial Chaos expansion. We also prove the well-posedness of the weak formula with respect to 

Maxwell–PC Debye model by using the Laplace transform, and the property of energy decay is identified, too, after defining 

the energy norm. In Section 3 , we present the Crank–Nicolson full discrete scheme with Nédélec–Raviart–Thomas element 

to approach the weak formula of Maxwell–PC Debye model and the property of energy decay in discrete form is proved. 

In Section 4 , we provide the error estimates between the discrete scheme and the weak formula. In Section 5 , a numerical 

example is set up to verify the convergence with a small parameter. 

2. Recalling Maxwell–PC Debye model 

In this section, we will introduce the source of the Maxwell–PC Debye Model. The existence and uniqueness of the 

solution and the properties of energy decay are given. 

2.1. Maxwell–Random Debye model 

Firstly, we define some useful two dimensional function spaces as follow 

H(curl, �) = 

{
u = (u 1 , u 2 ) ∈ (L 2 (�)) 2 ; curlu = 

∂u 2 

∂x 
− ∂u 1 

∂y 
∈ L 2 (�) 

}
, 

H 0 (curl, �) = { u ∈ H(curl, �) ; n × u = 0 , on ∂�} , 
where in the 2D, we define n × u := n 1 u 2 − n 2 u 1 . 

A two dimensional transverse electric Maxwell–Random Debye problem can be described by Gibson [11] : finding E ∈ 

C(0 , T ; H 0 (curl, �)) 
⋂ 

C 1 (0 , T ; L 2 (�) 2 ) , H ∈ C 1 (0 , T ; L 2 (�)) , P ∈ C 1 (0, T ; L 2 ( �) 2 ), P ∈ C 1 (0 , T ; (L 2 (D ) � L 2 (�) 2 ) such that 

∂H 

∂t 
= − 1 

μ0 

curlE , in (0 , T ] × �, (1) 

ε0 ε∞ 

∂E 

∂t 
= rotH − ∂P 

∂t 
, in (0 , T ] × �, (2) 

τ
∂P 

∂t 
+ P = ε0 εd E , in (0 , T ] × (D � �) , (3) 

where ε0 , ε∞ 

, μ0 are the dielectric parameters, the electric permittivity and the magnetic permeability, respectively. εd is 

defined by εd = εs − ε∞ 

and εs is the static permittivity. � is a polygonal domain in R 

2 with boundary � := ∂�, and n is the 

unit outward normal to ∂�. In the Maxwell’s equations, E , H are the electric fields and magnetic fields, respectively. We also 

denote rotH = ( ∂H 
∂y 

, − ∂H 
∂x 

) . P is the dielectric polarization, and P is the random polarization due to the random relaxation 

parameter τ ∈ D = [ τa , τb ] ⊂ (0 , ∞ ) . 

The system (1) –(3) is supplemented with the boundary condition 

n × E = 0 on ∂�, (4) 

and initial conditions 

E (x , 0) = E 0 (x ) , H(x , 0) = H 0 (x ) , P(x , 0) = P 0 (x ) , (5) 

for the given function E 0 (x ) , H 0 (x ) , P 0 (x ) . 
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