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a b s t r a c t 

This paper deals with a class of compact boundary value methods (CBVMs) for solving 

semi-linear reaction–diffusion equations (SLREs). The presented CBVMs are constructed by 

combining a fourth-order compact difference method (CDM) with the p -order boundary 

value methods (BVMs), where the former is for the spatial discretization and the lat- 

ter for temporal discretization. It is proven under some suitable conditions that the CB- 

VMs are locally stable and uniquely solvable and have fourth-order accuracy in space and 

p -order accuracy in time. The computational effectiveness and accuracy of CBVMs are fur- 

ther testified by applying the methods to the Fisher equation. Besides these research, we 

also extend the CBVMs to solve the two-component coupled system of SLREs. The nu- 

merical experiment shows that the extended CBVMs are effective and can arrive at the 

high-precision. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Consider the following initial-boundary value problem of SLREs: ⎧ ⎪ ⎨ 

⎪ ⎩ 

∂u 

∂t 
(x, t) = a 

∂ 2 u 

∂x 2 
(x, t) + g(u (x, t)) , (x, t) ∈ [0 , l] × [ t 0 , T ] , 

u (x, t 0 ) = ϕ(x ) , x ∈ [0 , l] , 

u (0 , t) = ψ 1 (t ) , u (l, t ) = ψ 2 (t) , t ∈ [ t 0 , T ] , 

(1.1) 

where x , t denote the spatial and temporal variables, respectively, a > 0 is the diffusion coefficient, ϕ : [0 , l] → R , ψ 1 : 

[ t 0 , T ] → R , ψ 2 : [ t 0 , T ] → R and g : R → R are some given sufficiently smooth mappings. This type of problem plays an 

important role in modeling real phenomena arising in physics, chemistry, biology and many other scientific fields (see e.g. 

[1–4] ). 

Generally speaking, it is difficult to obtain the exact solution of an initial-boundary value problem of SLREs. Hence ones 

turn to develop various numerical methods to solve the problem. Up to now, a lot of numerical methods for SLREs have been 

presented. For example, finite difference methods, implicit-explicit predictor-corrector methods, linearized compact multi- 

splitting methods, compact finite difference methods, spectral methods and continous/discontinous Galerkin finite element 
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methods have been introduced and studied in Refs. [4–12] , respectively. More related research also refer to the references 

therein. 

Besides the above full discretization methods, in recent years, many researchers considered the so-called method of lines 

(MOLs) for various partial differential equations (PDEs), where the spatial and temporal discretization methods were com- 

bined using. In particular, BVMs and the block BVMs (BBVMs) (cf. [13–24] ) are often used as the discretization approximation 

in time. With this idea, Sun and Zhang [25] introduced the high-order CBVMs for one-dimensional heat equations, Dehghan 

and Mohebbi [26] studied the high-order CBVMs for unsteady convection-diffusion equations and Liu et al. [27] combined 

Galerkin–Chebyshev spectral method with BBVMs to derive a class of high-effective MOLs for two-dimensional semi-linear 

parabolic equations. 

The above research show that BVMs are a kind of good candidates in temporal discretization. However, they were not 

applied to the problem of SLREs. In view of this, in the present paper, we give an investigation to this topic. The paper is 

organized as follows. In Section 2 , by combining a fourth-order compact difference method with BVMs, a class of CBVMs 

are derived for SLREs (1.1) . In Section 3 , the local stability and unique solvability of the induced CBVMs are studied and the 

corresponding criteria are established. In Section 4 , the error analysis is performed for the CBVMs and a convergence result 

is obtained. In Section 5 , the CBVMs are applied to the Fisher equation, whose numerical results show that the CBVMs are 

effective and can arrive at high-precision. In Section 6 , the CBVMs are extended successfully to solve the two-component 

coupled system of SLREs. Finally, in Section 7 , a concluding remark is presented to summarize the whole paper and propose 

some related open problems for the future research. 

2. A class of compact boundary value methods 

For solving the initial-boundary value problems (1.1) , in this section, we will present a class of numerical methods by 

combining CDMs with BVMs, where the former is for the discretization of spatial variable and the latter for the discretization 

of temporal variable. 

Let 0 = x 0 < x 1 < · · · < x m 

= l be a uniform mesh with x i = x 0 + ih, i = 0 , 1 , . . . , m, h = l/m, and W = { ω i | 0 ≤ i ≤ m } be 

the grid function space defined on �m 

= { x i | 0 ≤ i ≤ m } . Write 

δ2 
x ω i = 

1 

h 

2 
(ω i +1 − 2 ω i + ω i −1 ) , Kω i = 

1 

12 

(ω i +1 + 10 ω i + ω i −1 ) , i = 1 , . . . , m − 1 . (2.1) 

On the plane x = x i , the Eqs. (1.1) become 

∂u 

∂t 
(x i , t) = a 

∂ 2 u 

∂x 2 
(x i , t) + g(u (x i , t)) , i = 1 , . . . , m − 1 . 

Acting the operator K on both sides of the above equations yields 

K 

∂u 

∂t 
(x i , t) = a K 

∂ 2 u 

∂x 2 
(x i , t) + Kg(u (x i , t)) , i = 1 , . . . , m − 1 . (2.2) 

For giving a spatial discretization scheme, we introduce a result from Numerov [28] (see also Sun [29] ). 

Lemma 2.1. (cf. [28 , 29] ) Suppose v (x ) ∈ C 6 ([ x i −1 , x i +1 ]) . Then 

1 

12 

[ v ′′ (x i +1 ) + 10 v ′′ (x i ) + v ′′ (x i −1 )] − 1 

h 

2 
[ v (x i +1 ) − 2 v (x i ) + v (x i −1 )] = 

h 

4 

240 

v (6) (ζi ) , ζi ∈ (x i −1 , x i +1 ) . 

It follows from (2.1), (2.2) and Lemma 2.1 that there exist a series of bounded functions r i (t) (i = 1 , . . . , m − 1) on the 

interval [ t 0 , T ] such that 

K 

∂u 

∂t 
(x i , t) = aδ2 

x u (x i , t) + Kg(u (x i , t)) + h 

4 r i (t) , i = 1 , . . . , m − 1 . (2.3) 

A combination of boundary conditions in (1.1) and (2.3) generates that 

Ky ′ (t) = aLy (t) + K f (y (t)) + q (t) + h 

4 r(t) , t ∈ [ t 0 , T ] , (2.4) 

where 

y (t) = ( u (x 1 , t) , u (x 2 , t) , . . . , u (x m −1 , t) ) 
T 
, f (y (t)) = ( g(u (x 1 , t)) , g(u (x 2 , t)) , . . . , g(u (x m −1 , t)) ) 

T 
, 

K = 

1 

12 

(10 I m −1 + S) , L = 

1 

h 

2 
(−2 I m −1 + S) , r(t) = ( r 1 (t) , r 2 (t) , . . . , r m −1 (t) ) 

T 
, 
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