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a b s t r a c t 

Some results are presented on how oscillation is inherited by chemical reaction networks 

(CRNs) when they are built in natural ways from smaller oscillatory networks. The main 

results describe four important ways in which a CRN can be enlarged while preserving its 

capacity for oscillation. The results are for general CRNs, not necessarily fully open, but 

lead to an important corollary for fully open networks: if a fully open CRN R with mass 

action kinetics admits a nondegenerate (resp., linearly stable) periodic orbit, then so do all 

such CRNs which include R as an induced subnetwork. This claim holds for other classes 

of kinetics, but fails, in general, for CRNs which are not fully open. Where analogous re- 

sults for multistationarity can be proved using the implicit function theorem alone, the 

results here call on regular and singular perturbation theory. Equipped with these results 

and with the help of some analysis and numerical simulation, lower bounds are put on 

the proportion of small fully open CRNs capable of stable oscillation under various as- 

sumptions on the kinetics. This exploration suggests that small oscillatory motifs are an 

important source of oscillation in CRNs. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction and context of the paper 

At the heart of many biological systems are chemical reaction networks (CRNs), and the question of when these admit 

oscillation is of both theoretical and practical interest. Oscillation is known to occur – and play a key role – in a great 

variety of biological contexts. Examples include the natural rhythms of body clocks and ovulation, biochemical oscillations in 

cellular signalling, cyclic behaviour of various diseases, and periodic fluctuations in Lotka–Volterra-type models of interacting 

populations. Several chapters of [1] and [2] detail mathematical models of oscillation in biological settings. Some general 

biological principles underlying biological oscillation are discussed in [3] . Once a network admitting oscillation is identified, 

we might naturally wonder whether this network occurs as a “motif” in other larger networks and, if so, whether the larger 

networks must themselves admit oscillation. The desire to phrase this question precisely and provide some simple and 

partial answers motivates this work. 

Several papers have treated analogous questions about the inheritance of multistationarity in CRNs [4–7] . In a recent con- 

tribution my coauthor and I showed that a great deal can be done in this direction using the implicit function theorem [8] . 

An (incomplete) list of network modifications proven to preserve the property of admitting nondegenerate multistationarity 

were listed; these collectively define a partial order � on the set of all CRNs such that if a CRN R admits nondegenerate 

multistationarity, then so do all CRNs � R in this partial order. Although it is likely that most, if not all, of the results in 

[8] can be restated with “nondegenerate oscillation” replacing “nondegenerate multistationarity”, only part of this task is 

undertaken here: we prove four results about general CRNs, Theorems 1 to 4 , which are analogues of related results about 
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multistationarity in [8] , also numbered Theorems 1 to 4. An example of what these tell us is the following corollary about 

fully open CRNs: 

Proposition 1.1. If a fully open CRN R with mass action kinetics admits nondegenerate (resp., stable) oscillation, then so does 

any fully open CRN with mass action kinetics which includes R as an induced subnetwork. 

The definitions required to make this result precise will follow. Proposition 1.1 is the specialisation for mass action 

kinetics of a result with more general kinetic assumptions, Proposition 4.8 , (see Remark 4.9 ) which is a natural starting 

point for some computational exploration on small fully open CRNs admitting oscillation. It is worth noting at the outset 

that Proposition 1.1 fails if the CRNs are not assumed to be fully open. An example is provided in the concluding section 

( Example 6.1 ). 

Much of the mathematical literature on oscillation in CRNs has focussed on conditions which forbid oscillation, or forbid 

stable oscillation of the kind which might be observed in numerical simulations, or forbid bifurcations leading to oscilla- 

tion. For CRNs with mass action kinetics, there are the original results of deficiency theory [9–12] ; for CRNs with more 

general kinetics there are results based on the theory of monotone dynamical systems ( [13–16] for example), and algebraic 

approaches ( [17] for example). Various papers which do not directly treat CRNs also have natural applications to forbidding 

oscillation or stable oscillation in CRNs, including the work of Angeli, Hirsch and Sontag on “coherent” systems [18] , and 

of Li and Muldowney on generalised Bendixson’s criteria [19–21] . On the other hand oscillation has been shown to occur 

in numerical studies of various CRNs of interest (for example, [22–25] ). Aside from numerical work, there exists an impor- 

tant strand of theory drawing on approaches in convex and toric geometry which provides sufficient conditions for Hopf 

bifurcations in CRNs with mass action and generalised mass action kinetics [26–29] . These approaches lead to algorithms 

for the determination of parameter regions where Hopf bifurcation occurs. Other papers treating the question of sufficient 

conditions for oscillation in chemical reaction networks include [30] and [31] . 

The work here is aimed at closing the gap between theory which forbids oscillation and examples of oscillatory net- 

works or particular sufficient conditions for oscillation. It is likely that many examples of CRNs admitting oscillation in fact 

oscillate because they inherit this property from a smaller CRN which admits oscillation, and the goal is then to identify an 

appropriate notion of inheritance, and minimal oscillatory CRNs in some sense. The importance of inheritance is increasingly 

recognised. In [32] , Conradi and Shiu pose a question closely related to the main question in this paper, namely whether 

Hopf bifurcation is preserved when CRNs are modified in natural ways. The problem of identifying a “minimal” oscillatory 

subnetwork was tackled for the biologically important MAPK cascade in [33] . 

Computational work on fully open CRNs towards the end of the paper confirms the practical usefulness of inheritance 

approaches. As oscillation may occur in very small regions of parameter space, it may be hard to find by brute force in 

numerical simulations, even where it is straightforward to predict its occurrence by inheritance results. Finding a single 

small oscillatory CRN on the other hand immediately gives us knowledge of a large number of CRNs which inherit this 

oscillation. Ultimately, the hope is that examining CRNs which can neither be proven to forbid oscillation nor be shown to 

oscillate (using numerics, known sufficient conditions for oscillation, or inheritance results such as here) may lead to new 

theorems about necessary conditions for oscillation. 

1.1. Notational preliminaries 

Notation 1.2 (Nonnegative and positive vectors) . A real vector x = (x 1 , . . . , x n ) 
t is nonnegative (resp., positive) if x i ≥ 0 (resp., 

x i > 0) for each i , and we refer to the nonnegative (resp., positive) orthant in R 

n as R 

n 
≥0 

(resp., R 

n 
�0 

). Subsets of R 

n 
�0 

are 

referred to as positive. 

Notation 1.3 (Vector of ones) . 1 denotes a vector of ones whose length is inferred from the context. 

Notation 1.4 (Identity matrix) . I n is the n × n identity matrix. 

Notation 1.5 (Set theoretic inverse) . Given sets X , Y and a function f : X → Y , not necessarily invertible, f −1 will generally 

refer to the set theoretic inverse, namely, given Y 0 ⊆Y , f −1 (Y 0 ) = { x ∈ X : f (x ) ∈ Y 0 } . 
Notation 1.6 (Monomials, vector of monomials) . Given x = (x 1 , . . . , x n ) 

t and a = (a 1 , . . . , a n ) , x a is an abbreviation for the 

(generalised) monomial 
∏ 

i x 
a i 
i 

. If A is an m × n matrix with rows A 1 , . . . , A m 

, then x A means the vector of (generalised) 

monomials (x A 1 , x A 2 , . . . , x A m ) t . 

Notation 1.7 (Entrywise product) . Given two matrices A and B with the same dimensions, A ◦B will refer to the entrywise 

(or Hadamard) product of A and B , namely (A ◦ B ) i j = A i j B i j . 

2. Periodic orbits 

We remind the reader of some standard results from Floquet theory (Chapters 3 and 4 of [34] for example) as needed 

here. Let X ⊆ R 

r be open, F : X → R 

r be C 1 , and consider the ODE 

˙ x = F (x ) (2.1) 
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