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a b s t r a c t 

A strong edge coloring of a graph is a proper edge coloring in which every color class 

is an induced matching. The strong chromatic index χ ′ 
s (G ) of a graph G is the minimum 

number of colors in a strong edge coloring of G . Let �≥ 4 be an integer. In this note, we 

study the odd graphs and show the existence of some special walks. By using these results 

and Chang’s et al. (2014) ideas, we show that every planar graph with maximum degree 

at most � and girth at least 10� − 4 has a strong edge coloring with 2� − 1 colors. In 

addition, we prove that if G is a graph with girth at least 2� − 1 and mad (G ) < 2 + 

1 
3�−2 

, 

where � is the maximum degree and �≥ 4, then χ ′ 
s (G ) ≤ 2� − 1 ; if G is a subcubic graph 

with girth at least 8 and mad (G ) < 2 + 

2 
23 

, then χ ′ 
s (G ) ≤ 5 . 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

All graphs considered in this paper are simple, finite and undirected. A strong edge coloring of a graph is a proper edge 

coloring in which every color class is an induced matching. The strong chromatic index χ ′ 
s (G ) of a graph G is the minimum 

number of colors in a strong edge coloring of G . Fouquet and Jolivet [12,13] introduced the notion of strong edge coloring 

for the radio networks and their frequencies assignment problem. 

The greedy algorithm provides an upper bound 2�(� − 1) + 1 on the strong chromatic index, where � is the maxi- 

mum degree of the graph. In 1985, Erd ̋os and Nešet ̌ril constructed graphs with strong chromatic index 5 
4 �

2 when � is 

even, 1 
4 (5�2 − 2� + 1) when � is odd. Inspired by their construction, they proposed the following strong edge coloring 

conjecture during a seminar in Prague. 

Conjecture 1 (Erd ̋os and Nešet ̌ril, see [10] ) . If G is a graph with maximum degree �, then 

χ ′ 
s (G ) ≤

{
5 
4 
�2 , if � is even , 

1 
4 
(5�2 − 2� + 1) , if � is odd. 

For � = 3 , the conjecture was confirmed independently by Horák et al. [14] and Andersen [1] . For � = 4 , Cranston 

[7] showed that 22 suffices, and this was further improved to 21 by Huang et al. [15] . In 1997, Molloy and Reed [17] gave 

the first general bound by using probabilistic techniques, showing that if � is large enough, then every graph with maximum 

degree � has a strong edge coloring with 1.998 �2 colors. Recently, the upper bound was improved to 1.93 �2 by Bruhn and 

Joos [4] . Very recently, this was further improved to 1.835 �2 by Bonamy et al. [2] . 

For planar graphs, Faudree et al. [11] established the following upper bound using the Four Color Theorem and Vizing’s 

Theorem. 
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Theorem 1.1 (Faudree et al. [11] ) . Every planar graph with maximum degree � has a strong edge coloring with 4� + 4 colors. 

Kostochka et al. [16] showed that every subcubic planar multigraph without loops (multiple edges are allowed) has 

a strong edge coloring with nine colors. Borodin and Ivanova [3] showed that if G is a planar graph with girth at least 

40 � �2 � + 1 , then χ ′ 
s (G ) ≤ 2� − 1 . Chang et al. [6] improved the lower bound on the girth as the following. 

Theorem 1.2 (Chang et al. [6] ) . Let �≥ 4 be an integer. If G is a planar graph with maximum degree at most � and girth at 

least 10� + 46 , then χ ′ 
s (G ) ≤ 2� − 1 . 

In this note, we improve the lower bound on the girth to 10� − 4 when �≥ 4, by following and improving the method 

in [6] . In addition, we give two results with the condition on the maximum average degree. The maximum average degree 

mad( G ) of a graph G is defined as 

mad (G ) = max 
∅	 = H⊆G 

{
2 | E(H) | 
| V (H) | 

}
. 

2. Odd graphs 

The odd graph O n has one vertex for each of the (n − 1) -element subsets of a (2 n − 1) -element set { 1 , 2 , . . . , 2 n − 1 } . 
Two vertices are adjacent if and only if the corresponding subsets are disjoint. O n is a Kneser graph KG (2 n − 1 , n − 1) . We 

use v to denote a vertex in the odd graph, and use [ v ] to denote the corresponding subset. By the definition, every edge u v 
can be labeled with a unique element which is not contained in [ u ] or [ v ] . By the particular structure of odd graphs, the 

labels on the edges induce a strong edge coloring of the odd graph. We will use this property in the proof of Theorem 3.2 . 

A walk is a sequence of edges such that every two consecutive edges are adjacent. A special walk is a walk whose every two 

consecutive edges are distinct. A k-special walk is a special walk of length k . A k-path is a path with k edges. 

2.1. Structural results 

Lemma 1. Let O n be the odd graph. Then the following items hold: 

(a) If the distance between u and v is two, then [ u ] and [ v ] have exactly one different element. Thus, for two vertices u and v , if 
[ u ] and [ v ] have exactly k different elements, then they can be reached from each other in 2 k steps and this path is a shortest 

even path. 

(b) If w 1 w 2 w 3 is a path with w 1 w 2 and w 2 w 3 being labeled with x and y respectively, then [ w 3 ] is obtained from [ w 1 ] by 

replacing y with x. 

(c) Every 3-path v 1 v 2 v 3 v 4 is contained in a 6-cycle. 

Proof. The first two items are trivial, so we do not include their proofs. Note that the sets corresponding to v 1 and v 3 
differ only on one element. So we may assume that [ v 1 ] = X ∪ { x 1 } and [ v 3 ] = X ∪ { x 2 } , where X is an (n − 2) -subset of 

{ 1 , 2 , . . . , 2 n − 1 } . Thus, we can obtain [ v 2 ] = { 1 , 2 , . . . , 2 n − 1 } \ (X ∪ { x 1 , x 2 } ) . Without loss of generality, we may assume 

that [ v 4 ] = { 1 , 2 , . . . , 2 n − 1 } \ (X ∪ { x 2 , x 3 } ) and x 1 	 = x 3 . It is easy to check that the path v 1 v 2 v 3 v 4 is contained in a 6-cycle 

v 1 v 2 v 3 v 4 v 5 v 6 , where [ v 5 ] = X ∪ { x 3 } and [ v 6 ] = { 1 , 2 , . . . , 2 n − 1 } \ (X ∪ { x 1 , x 3 } ) . �

In the following, we use x, y 
loooon 

to denote the labels x and y on two consecutive edges on a walk. 

Theorem 2.1. Given two vertices w 0 , w 2 n (not necessarily distinct) in O n (n ≥ 4 ) with λ1 / ∈ [ w 0 ] and λ2 / ∈ [ w 2 n ] , there exists a 

2 n-special walk from w 0 to w 2 n such that its first edge is labeled with λ1 and the last edge is labeled with λ2 . 

Proof. We may assume that [ w 0 ] = { x 1 , x 2 , . . . , x k } ∪ { y k +1 , y k +2 , . . . , y n −1 } , [ w 2 n ] = { x 1 , x 2 , . . . , x k } ∪ { z k +1 , z k +2 , . . . , z n −1 } and 

[ w 0 ] ∪ [ w 2 n ] ∪ { s 1 , s 2 , . . . , s k +1 } = { 1 , . . . , 2 n − 1 } , where k ∈ { 0 , 1 , . . . , n − 1 } . By symmetry, we divide the proof into three 

cases. 

Case 1. λ1 ∈ { z k +1 , z k +2 , . . . , z n −1 } and λ2 ∈ { y k +1 , y k +2 , . . . , y n −1 } . . 
It is obvious that k 	 = n − 1 . By symmetry, we may assume that λ1 = z k +1 and λ2 = y n −1 . 

Subcase 1.1. k ≤ n − 4 . 

In the odd graph O n , we can find a special walk from w 0 to w 2 n , whose edges are labeled with z k +1 , y k +1 
loo o o o ooo o o o on 

, z k +2 , y k +2 
loo o o o ooo o o o on 

, 

. . . , z n −3 , y n −3 
loo o o o ooo o o o on 

, s 1 , y n −2 
loo o ooo o on 

, s 2 , s 1 
lo oo on 

, . . . , s k +1 , s k 
loo o ooo o on 

, z n −2 , s k +1 
loo o o o ooo o o o on 

, z n −1 , y n −1 
loo o o o ooo o o o on 

. 

Subcase 1.2. k = n − 3 . 

In the odd graph O n , we can find a special walk from w 0 to w 2 n , whose edges are labeled with z n −2 , x 1 
loo o ooo o on 

, s 1 , y n −2 
loo o ooo o on 

, s 2 , s 1 
lo oo on 

, 

s 3 , s 2 
lo oo on 

, . . . , s k , s k −1 
loo o ooo o on 

, x 1 , s k 
lo oo on 

, z n −1 , y n −1 
loo o o o ooo o o o on 

. (It needs n at least 4, otherwise x 1 does not exist.) 
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