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a b s t r a c t 

We introduce a new finite element (FE) discretization framework applicable for covariant 

split equations. The introduction of additional differential forms (DF) that form pairs with 

the original ones permits the splitting of the equations into topological momentum and 

continuity equations and metric-dependent closure equations that apply the Hodge-star 

operator. Our discretization framework conserves this geometrical structure and provides 

for all DFs proper FE spaces such that the differential operators (here gradient and diver- 

gence) hold in strong form. We introduce lowest possible order discretizations of the split 

1D wave equations, in which the discrete momentum and continuity equations follow by 

trivial projections onto piecewise constant FE spaces, omitting partial integrations. Approx- 

imating the Hodge-star by nontrivial Galerkin projections (GP), the two discrete metric 

equations follow by projections onto either the piecewise constant (GP0) or piecewise lin- 

ear (GP1) space. 

Out of the four possible realizations, our framework gives us three schemes with sig- 

nificantly different behavior. The split scheme using twice GP1 is unstable and shares the 

dispersion relation with the P1–P1 FE scheme that approximates both variables by piece- 

wise linear spaces (P1). The split schemes that apply a mixture of GP1 and GP0 share 

the dispersion relation with the stable P1–P0 FE scheme that applies piecewise linear and 

piecewise constant (P0) spaces. However, the split schemes exhibit second order conver- 

gence for both quantities of interest. For the split scheme applying twice GP0, we are not 

aware of a corresponding standard formulation to compare with. Though it does not pro- 

vide a satisfactory approximation of the dispersion relation as short waves are propagated 

much too fast, the discovery of the new scheme illustrates the potential of our discretiza- 

tion framework as a toolbox to study and find FE schemes by new combinations of FE 

spaces. 

© 2017 The Authors. Published by Elsevier Inc. 
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( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

The Finite Element (FE) method provides a powerful framework to discretize partial differential equations (PDEs) and 

includes methods to prove the discrete models’ convergence, stability, and accuracy properties (see e.g. [11,25] ). By offering 
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flexibility in the choice of computational (unstructured, h/p-adapted) meshes (cf. [8] ) while providing an approximation of 

the continuous PDEs with the required order of accuracy, FE discretizations are nowadays appreciated in all research areas 

that apply numerical modeling. 

Discretizations using finite element methods provide one important advantage over other methods: starting from a vari- 

ational formulation the discretization follows simply by substituting discrete function spaces for the continuous spaces 

(Galerkin methods) while the differential operators remain unchanged. There exist a large variety of different suitable FE 

spaces to choose from. However, not all choices lead to well-behaved schemes. In particular mixed FE schemes suffer from 

this problem, where different variables of the PDE system are represented by different FE spaces. In such schemes, certain 

combinations of FE spaces lead to instabilities that exhibit spurious modes, rendering the solutions useless, in particular 

when studying nonlinear phenomena. A famous example for an unstable scheme is given by an approximation of both ve- 

locity and height fields of the 1D shallow-water equations by piecewise linear functions (cf. [28] and Section 3 ), where it is 

well known that equal order FE pairs are always unstable [11,13] . 

In order to avoid unsuitable choices, the Finite Element Exterior Calculus (FEEC) method [2,3] provides means for choos- 

ing a suitable pair of FE spaces that is guaranteed to lead to a stable mixed discretization. In particular, FEEC puts geo- 

metrical constraints on the FE spaces such that geometric properties, like the Helmholtz decomposition of vector fields, are 

preserved in the discrete case. As a result, FEEC pairs of spaces always satisfy the inf-sup condition [1] while combinations 

of FE spaces that are not stable are ruled out. For the above mentioned 1D wave equations, approximating the velocity with 

piecewise linear and the height field with piecewise constant spaces satisfies the requirements of FEEC and gives indeed a 

stable scheme (cf. again [28] and Section 3 ). 

Although providing a very general mathematical framework, naturally there are issues for which FEEC yields no satisfying 

answers. Let us consider, for instance, problems in geophysical fluid dynamics (GFD), in which an additional Coriolis term 

in the equations introduces effects caused by the Earth’s rotation [27] . For an atmosphere in rest, the Coriolis force that 

depends on the velocity and the gradient of the pressure (or height) are in geostrophic balance . To maintain this balance in 

the discretization, the pressure (or height) field should be represented discretely at one order of consistency higher than 

that of the velocity field. Unfortunately, this contradicts the requirement imposed by FEEC on this FE pair. In [13] , this issue 

could be resolved by applying a combination of FE and Discontinuous Galerkin (DG) spaces. 

Moreover, in order to meet the regularity requirement of the chosen FE pairs, FEEC requires the PDEs to be written in 

weak variational form, in which partial integration has been performed. As pointed out recently in [20] , the conventional 

mixed (weak) form of the equations causes certain operators, such as the co-derivative, to be non-local (global) operators. As 

a consequence, such FEEC methods are not locally volume preserving, which reduces the quality of the local representation 

of the quantities of interest (cf. [20] ). 

In this manuscript, our main goal is to introduce a FE discretization framework that provides an alternative methodology 

to avoid mentioned unsuitable FE choices with GFD in mind. More specifically, we develop a framework that applies two 

FEEC pairs instead of one, therefore providing a larger variety of different combinations of FE spaces, in which both deriva- 

tives and co-derivatives are local operators. This framework is based on formulating the PDEs in split form, as introduced 

in [4,5] for the GFD equations. The split equations consist of a topological and metric part while employing straight and 

twisted differential forms to adequately model the physical quantities of interest. The FE discretization framework translates 

this geometrical structure from the continuous to similarly structured discrete equations (cf. Section 2 ). 

Our approach shares some basic ideas with other structure-preserving discretization methods (see e.g. [6,7,17,18] ), but 

in particular with mimetic discretizations (see e.g. [9,10,12,16,24] , and [26] for a historical overview). In the latter methods, 

the PDEs are also formulated by differential forms and a clear distinction between purely topological and metric terms is 

achieved. Applying algebraic topology as the discrete counterpart to differential geometry, the discrete equations mimic the 

underlying geometrical structure and are therefore denoted as structure-preserving (cf. [19] ). Similar ideas of distinguishing 

between metric-dependent and metric-free terms in a GFD related context can also be found in [15] introducing FEEC dis- 

cretizations of the nonlinear rotating shallow-water equations. In spite of these similarities, none of the schemes associate 

a proper FE space to each variable, as suggested by our framework. 

For the sake of a clear exposition, we focus on a simple example, the split 1D linear shallow-water set of equations. 

Extending our framework to treat also more practically relevant equations, such as the nonlinear rotating shallow-water 

equations, is the subject of ongoing and future work. By investigating structure-preserving methods that apply lowest order 

(piecewise linear and constant) FE spaces to keep computational costs low, we address the requirements of GFD in devel- 

oping schemes that satisfy first principle conservation laws (i.e mass and momentum conservation) and that are suited for 

simulations with integration times in the order of years and longer. 

We structure the manuscript as follows. In Section 2 , we introduce the split set of 1D wave equations and motivate 

the use of the split form of the equations as the fundamental formulation for their discretization. Recalling in Section 3 two 

low-order mixed FE schemes, namely the unstable P1–P1 and the stable P1–P0 pairs, we introduce in Section 4 the new dis- 

cretization framework, referred to as the split FE method . We suggest a solving algorithm and present the schemes’ discrete 

dispersion relations. Comparing them if possible with the conventional mixed schemes, we perform in Section 5 numerical 

simulations to investigate conservation behavior, convergence rates, and accuracy of all schemes. Finally in Section 6 , we 

draw conclusions and provide an outlook for ongoing and future work. 
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