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a b s t r a c t 

In this paper, we consider theoretical and numerical properties of a nonlinear boundary- 

value problem which is strongly related to the well-known Gelfand–Bratu model with pa- 

rameter λ. When approximating the nonlinear term in the model via a Taylor expansion, 

we are able to find new types of solutions and multiplicities, depending on the final index 

N in the expansion. The number of solutions may vary from 0, 1, 2 to ∞ . In the latter case 

of infinitely many solutions, we find both periodic and semi-periodic solutions. Numeri- 

cal experiments using a non-standard finite-difference (NSFD) approximation illustrate all 

these aspects. We also show the difference in accuracy for different denominator func- 

tions in NSFD when applied to this model. A full classification is given of all possible cases 

depending on the parameters N and λ. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

In this paper we consider smooth (continuous) solutions of the following truncated Bratu–Picard (tBP) model: { 

u 

′′ (x ) + λ
N ∑ 

n =0 

[ u (x )] 
n 

n ! 
= 0 , x ∈ [0 , 1] , λ ∈ R , N ∈ N ∪ { 0 } ∪ {∞} , 

u (0) = u (1) = 0 . 

(1.1) 

For N = ∞ and λ≥ 0, this yields the classical Gelfand–Bratu model [5,6,11,23] for which an exact solution is known, see 

among others [7] and Section 2.4 . Traditionally, the names Bratu [5,6] and, sometimes, Gelfand [11] are coupled to this 

model. However, we propose to use the name Picard as well, since we found by performing a historical literature study that 

he was the first one who actually introduced the model, with non-unique solutions. His report on this model appeared two 

decades earlier than Bratu [5] . For more information on this observation, we would like to refer to the four-page note by 

Picard in [23] . 

The classical Gelfand–Bratu (GB) problem ( N = ∞ and λ≥ 0) is a nonlinear elliptic (partial) differential equation, which 

finds, for example, its applications in combustion theory (the thermal ignition of a chemically active mixture of gasses) 

[4] . Other application areas of the GB problem appear in elasticity theory (membrane buckling) [26] , in astronomy (gravita- 

tional equilibrium of polytropic stars and the Chandrasekhar model of the expansion of the universe) [8] , in thermo-electro- 

hydrodynamic models and in nanotechnology (electrospinning processes) [28] . 
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In previous numerical studies of the classical Gelfand–Bratu problem, several numerical methods have been proposed and 

compared to the exact solution. Most of these methods converge only to one of the two solutions of the model. Different 

computational techniques were compared with each other. For example, finite difference methods and multigrid methods 

are used in [21] . A direct shooting method and a Lie-group shooting method were presented in [1,7] . Further, perturbation 

iterations, parameter perturbations and parameter splines were implemented in [15] . Phase plane solutions for perturbation 

problems were given in [25] . Boyd’s method [14] succeeded in giving both the lower and upper solutions, in case of multiple 

solutions. Buckmire [7] applied Mickens nonstandard finite difference method (NSFD) and compared the performances of the 

Adomian decomposition method, Boyd’s pseudospectral method, nonlinear shooting method and standard finite difference 

(SFD) and NSFD methods. Buckmire reported that the NSFD method may converge to both solutions (the lower and the 

upper one) and is more accurate than SFD. A smart NSFD scheme for second order nonlinear boundary value problem has 

been discussed in Erdogan [10] . The related, more general, compact exponentially fitted method is used in [22] and SFD and 

NSFD approaches are considered as special cases. Recently an iterative finite difference method for solving the GB-model has 

been discussed in [13] . Mohsen [20] presented a straightforward solution technique of the 1D planar Bratu problem with 

different treatments of the resulting nonlinear system of equations by using SFD and NSFD methods. Mohsen recommended 

a simple sinusoidal function as an initial guess for NSFD which provides more accurate results. 

Motivated by the recent articles of Mohsen [20] and Buckmire [7] , we present a new and extended study of the tBP 

model of which the GB-model is a special case. We consider several cases of model (1.1) and investigate properties of the 

solution u N 
λ
(x ) which depend on the parameter λ and the index N . We present several theoretical properties of the solution 

in which each solution of the model (1.1) has exactly one maximum and is symmetric at x = 

1 
2 for λ> 0 . Previous articles 

considered only positive solutions but we consider all smooth solutions, where some of them are periodic and others are 

semi periodic. We also show theoretically and numerically that a unique solution exists for λ≤ 0 . We work out asymptotic 

expressions, to show the behavior of the solution for small and large values of the parameter λ. We present a further study 

of the NSFD scheme for iteratively solving the resulting nonlinear systems by choosing a simple sinusoidal function having 

the appropriate amplitude, as an initial guess. We observe that NSFD has a similar simplicity as an SFD approximation but 

it is slightly more accurate, in most cases. Numerical experiments show that a large number of solutions can be obtained 

which are either periodic or semi-periodic. In fact, the theory shows that infinitely many may exist. This is explored in 

an upcoming paper [30] . Graphically we also present the bifurcation nature of all possible cases of the tBP model (1.1) . In 

literature, mainly positive solutions are considered for the λ≥ 0-case. In this paper, we give a full classification of all solution 

types of model (1.1) , both positive or negative and (semi)-periodic, for all λ ∈ R . 

The paper is organized as follows. In Section 2 , we present several theoretical, analytical and asymptotic properties of 

the solution and we also discuss exact solutions for some special cases of the truncated Bratu–Picard model (1.1) . The SFD 

and NSFD approximations are worked out in Section 3 . In Section 4 , numerical experiments are performed to discuss the 

numerical aspects of the different cases of the truncated Bratu–Picard problem. All types of possible shapes of solutions 

(periodic and semi-periodic) and bifurcations are displayed in Section 5 . In Section 6 , we summarize the theoretical and 

numerical results. 

2. Properties of the solution 

We will denote solutions of the model (1.1) simply by u ( x ) or, when it is appropriate, by u N 
λ
(x ) to stress their dependence 

on the parameters λ and N . 

2.1. General properties 

We distinguish between several cases. For this, we define the following two subsets of N : 

N 2 := { 2 , 4 , 6 , 8 , ... } , 
N 3 := { 3 , 5 , 7 , 9 , 11 , ... } . 

Note, that the special cases N = 0 , N = 1 and N = ∞ will be treated separately. Further, it is useful to define the func- 

tions 

f (u ) = f N (u ) := 

N ∑ 

n =0 

u 

n 

n ! 
and F (u ) := 

∫ u 

0 

f (ω ) dω . 

In the following part, we describe and prove a series of analytical and asymptotic properties of the solution u ( x ) of model 

(1.1) . 

Lemma 1. For N ∈ N 2 , we have f N ( u ) > 0 for all u ∈ R , whereas for N ∈ N 3 , f N ( u ) > 0 for all positive u and a unique value ˜ u < 0 

exists with f N ( ̃  u ) = 0 (see also the four graphs in Fig. 1 ). 

Proof. Note that, for u ≥ 0, automatically we find f N ( u ) > 0, since all single terms are positive and f N (0) = 1 . Next, assume 

that u < 0. Then f ′ 
N 
(u ) = f N−1 (u ) and f N (u ) = f N−1 (u ) + 

u N 

N! . For N ∈ N 2 , we observe that lim u →−∞ 

f N (u ) = + ∞ . Suppose 

that there exists a value ˜ u < 0 such that f N ( ̃  u ) ≤ 0 . Then, there must be a u ∗ < 0 such that f N ( u 
∗) ≤ 0 and f ′ 

N 
(u ∗) = 0 . At this 
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