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a b s t r a c t 

Polynomial chaos expansion (PCE) is widely used by engineers and modelers in various en- 

gineering fields for uncertainty analysis. The computational cost of full PCE is unaffordable 

for the “curse of dimensionality” of the expansion coefficients. In this paper, a new method 

for developing sparse PCE is proposed based on the diffeomorphic modulation under ob- 

servable response preserving homotopy (D-MORPH) algorithm. D -MORPH is a regression 

technique, it can construct the full PCE models with model evaluations much less than the 

unknown coefficients. This technique determines the unknown coefficients by minimizing 

the least-squared error and an objective function. For the purpose of developing sparse 

PCE, an iterative reweighted algorithm is proposed to construct the objective function. As 

a result, the objective in D -MORPH regression is converted to minimize the � 1 norm of 

PCE coefficients, and the sparse PCE is established after the proposed algorithm converges 

to the optimal value. To validate the performance of the developed methodology, several 

benchmark examples are investigated. The accuracy and efficiency are compared to the 

well-established least angle regression (LAR) sparse PCE, and results show that the devel- 

oped method is superior to the LAR-based sparse PCE in terms of efficiency and accuracy. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Along with the rapid development of computer science and technique, a variety of complex computational models have 

been developed for simulating and predicting the behavior of systems in nearly all fields of engineering and science. Opera- 

tions on these models are time consuming and computationally cumbersome, thus a remedy is to substitute these complex 

models with surrogate models that possess similar statistical properties but a simple functional form [1] . 

Surrogate model, also known as meta-model, is a technique to generate a mathematical or numerical representation of 

a complex system based on a small amount of input–output data [2] . Over last few years, many surrogate models have 

been developed such as response surface method (RSM) [3,4] , Kriging [5,6] , radial basis function (RBF) [7,8] , artificial neural 

networks (ANN) [9,10] , support vector machine (SVM) [11,12] , polynomial chaos expansion (PCE) [13–16] , among which PCE 

has gained much attention for uncertainty analysis [17] in engineering applications. 

PCE was originally proposed by Wiener with normally distributed random variables using Hermite polynomials [18] . Xiu 

and Karniadakis [19] extended it to other types of statistical distributions (uniform, beta, gamma,…). The key concept in PCE 

is to expand the model response onto basis made of multivariate polynomials that are orthogonal with respect to the joint 
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distribution of the input variables. In this setting, characterizing the response probability density function (PDF) is equiv- 

alent to evaluating the PCE coefficients, i.e. the coordinates of the random response in this basis [14] . The coefficients of 

the expansion are evaluated in terms of the response of the original model at a set of points in the input space. Generally, 

two classes of methods are applied to compute the PCE coefficients non-intrusively, namely projection method and regres- 

sion method. The former approach estimates each coefficient based on a multi-dimensional numerical integration, and the 

latter approach computes the coefficients using least square regression. However, the required computational cost increases 

exponentially with the dimensionality of the input variables, which seriously restricts the engineering applications of PCE. 

To address the issue of “curse of dimensionality”, several efficient approaches have been proposed in the literature. Raisee 

[20,21] proposed a POD-based model reduction technique, where the computational expense is reduced by expanding the 

model output into its principal components [20] . Assuming the PCE representation of the model output is sparse, Blatman 

[14] firstly proposed a stepwise regression technique to select the significant basis functions sequentially based on cross- 

validation (CV), and then the least angle regression (LAR) algorithm [15] was exploited to detect the basis function based 

on the correlation to the model output. In the meanwhile, a well-validated MATLAB software, named UQlab, was developed 

by Marelli and Sudret [22] based on the LAR sparse PCE algorithm. Another stepwise regression technique was proposed by 

Abraham et al. [17] , where the most important basis functions are selected sequentially based on the efficient tools relevant 

to probabilistic method. A new approach for building sparse PCE was also proposed by Shao et al. [23] using Bayesian 

approach based on the Kashyap information criterion for model selection. These methods have been proved to provide a 

significant computational gain compared to the classic full PCE. 

In this paper, the Diffeomorphic Modulation under Observable Response Preserving Homotopy (D-MORPH) regression 

technique is proposed to build sparse PCE meta-model. D -MORPH is a general approach for model exploration, which was 

originally established for solving differential equations [24–26] . The goal of D -MORPH regression is to search for the best 

model that preserves desired features and diminishes undesired properties with an objective function. Inspired by the basis 

pursuit algorithm in “compressed sensing” technique [27–33] , this work converts the objective function of D -MOROH re- 

gression to the � 1 norm of PCE coefficients. The idea of � 1 -minimization has been widely adopted in “compressed sensing”

method for function approximation. Thus sparse PCE meta-model can be obtained by the � 1 -minimization approach [34,35] . 

Compared to the existing work on basis pursuit algorithm, the superiority of D -MORPH regression is twofold: (1) obtaining 

the sparse solution while preserving fitting accuracy, (2) avoiding determination of the regularization parameter in basis 

pursuit problem [27–33] . Several benchmark analytical functions are used to validate and assess the performance of the 

proposed method, and the results are compared with the well-established LAR method in Ref. [15] . 

The reminder of this paper is organized as follows. In Section 2 , we reviews the methodology of classic full PCE. 

Section 3 provides an overview of D -MORPH algorithm. After the new objective function and the proposed iterative al- 

gorithm are proposed, numerical applications are given in Section 4 . The conclusion comes in the end. 

2. Polynomial chaos approximation 

For a model y = g ( x ) where the input vector x is composed of n independent random variables x = { x 1 , x 2 ,…, x n }, y is the 

output response of interest. The classic PCE of second-order random variable may be expanded as follows: 

y = g(x ) = 

∞ ∑ 

j=0 

β j ψ j (x ) (1) 

where ψ j ( x )( j = 0, …, ∞ ) is the basis on the space of second order random variables and β j ( j = 0, …, ∞ ) are the coefficients 

in the expansion. 

PCE in Eq. (1) needs to be truncated for practical applications as follows: 

y = 

p ∑ 

j=1 

β j ψ j (x ) (2) 

If the order of the polynomials used is d and there are n input variables x i ( i = 1, …, n ), the total number of the expansion 

terms with order less than or equal to d is given by 

p = 

(d + n )! 

d! n ! 
(3) 

Assuming that the input vector x has independent components x i with prescribed probability density function (PDF) f X i ( x i ) , 

then the joint PDF of x can be obtained by 

f X (x ) = 

n ∏ 

i =1 

f X i ( x i ) (4) 

For each x i , one can construct a family of orthogonal univariate polynomials { ψ 

(i ) 
j 

, j = 0 , 1 , 2 . . . } with respect to their re- 

spective PDF satisfying: 

E 
[
ψ 

(i ) 
j 

( x i ) ψ 

(i ) 
k 

( x i ) 
]

= 

∫ 
ψ 

(i ) 
j 

( x i ) ψ 

(i ) 
k 

( x i ) f X i ( x i ) d x i = c (i ) 
j 

δ jk (5) 
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