Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Matching of 5- γ -critical leafless graph with a cut edge^{\star}

Yuxuan Yang, Mei Lu*

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

ARTICLE INFO

MSC: 05C69 05C70

Keywords: Domination number Critical Perfect matching Nontrivial cut edge

ABSTRACT

Given a graph G = (V, E), a subset *S* of *V* is a dominating set of *G* if every vertex in *V**S* is adjacent to a vertex in *S*. The minimum cardinality of a dominating set in a graph *G* is called the domination number of *G* and is denoted by $\gamma(G)$. A graph *G* is said to be $k-\gamma$ -critical if $\gamma(G) = k$, but $\gamma(G + e) < k$ for each edge $e \in E(\overline{G})$, where \overline{G} is the complement of *G*. In this paper, we first provide the structure of $k-\gamma$ -critical leafless connected graphs with a nontrivial cut edge. Then we establish that each 5- γ -critical leafless connected graph of even order contains a perfect matching.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, all graphs will be finite, simple and connected. Let G = (V, E) be a graph. The complement of G is denoted by \overline{G} . For a subset $S \subseteq V$, G[S] is a subgraph of G induced by S. For a vertex v in G, the set $N(v) = \{u \in V \mid uv \in E\}$ is called the open neighborhood of v and $N[v] = N(v) \cup \{v\}$ is the closed neighborhood of v. For a subset $S \subseteq V$, $N(S) = \bigcup_{v \in S} N(v)$ is the open neighborhood of S and $N[S] = N(S) \cup S$ is the closed neighborhood of S. Let H be a subgraph of G and $v \in V(G)$. We will use H + v and H - v to denote the subgraph $G[V(H) \cup \{v\}]$ and $G[V(H) \setminus \{v\}]$ of G, respectively. Similarly, the graph G + uvarises from G by adding an edge uv between two non-adjacent vertices u and v of G.

A vertex of degree one is called a *leaf*. The edge incident with a leaf is known as a *pendant edge*. A *cut edge* of a connected graph is one whose deletion results in a disconnected graph. A cut edge is said to be a *nontrivial cut edge* if it is not a pendant edge. A graph is called *leafless* if there is no leaves in the graph. Let G = (V, E) be a graph with *n* vertices. A *matching* of *G* is a set *M* of edges such that no two edges are incident with a common vertex. The matching number of *G*, denoted by v(G), is the size of a maximum matching of *G*. If *n* is even and $v(G) = \frac{n}{2}$, then we will call *G* has a *perfect matching*. A *near-perfect matching* if and only if *n* is odd and $v(G) = \frac{n-1}{2}$. If G - v has a perfect matching for every choice of $v \in V(G)$, then *G* is said to be *factor-critical*. If *G* is factor-critical, then *G* has a near-perfect matching. A set of vertices of *G* is called an *independent set* if no two of its elements are adjacent.

A semicomplete digraph is a biorientation of a complete graph and a *tournament* is an orientation of a complete graph. Let D = (V, E) be a digraph of order n. A path P in D is an alternating sequence $v_1v_2 \cdots v_k$ such that $v_iv_{i+1} \in E(D)$ for $1 \le i \le k-1$ and the vertices of P are distinct. P is called a *Hamilton path* of D if k = n. It is well known if D is a tournament, then D contains a Hamilton path.

A subset *S* of *V* is a *dominating set* of *G* if N[S] = V. For *S*, $T \subseteq V(G)$, we say that *S* dominates *T*, denoted by $S \succ T$, if $T \subseteq N_G[S]$. The *domination number* of *G*, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of *G*. *G* is said to be

* Corresponding author.

https://doi.org/10.1016/j.amc.2017.11.050 0096-3003/© 2017 Elsevier Inc. All rights reserved.

^{*} This work is partially supported by National Natural Science Foundation of China (no. 11771247).

E-mail addresses: yx-yang13@mails.tsinghua.edu.cn (Y. Yang), mlu@math.tsinghua.edu.cn (M. Lu).

 $k-\gamma$ -critical if $\gamma(G) = k$, but $\gamma(G+e) < k$ for each edge $e \in E(\overline{G})$. It is easy to find that a graph is 1- γ -critical if and only if it is complete.

This concept of $k-\gamma$ -critical graph was first introduced in 1983 by Sumner and Blitch [6]. In [6], $2-\gamma$ -critical graphs and $3-\gamma$ -critical disconnected graphs were characterized. Since then $k-\gamma$ -critical graphs have been paid a lot of attention (see for example [1–6,8]).

The problem of prefect matching in k- γ -critical graph is delicate and interesting. There are many results about matching for k = 3, see [6] and [2]. For example, it was proved that every connected 3- γ -critical graph with even order has a perfect matching by Sumner and Blitch [6]. In 2010, Ananchuen et al. [3] considered the k- γ -critical graphs for $k \ge 4$. They first gave a characterization of k- γ -critical connected graphs containing at least k - 1 leaves and then showed that if *G* is a k- γ -critical graph of even order containing at least k - 2 leaves for $k \ge 4$, then *G* has a perfect matching. They also showed that if *G* is a 4- γ -critical graph of even order with a cut vertex, then *G* has a perfect matching. These results partially resolved a problem posed by Sumner and Wojcicka in [7].

In this paper, we will concentrate on 5- γ -critical graph with a nontrivial cut edge. We will provide the structure of a k- γ -critical graphs with a nontrivial cut edge. Then we show that a 5- γ -critical leafless graph of even order with a cut edge has a perfect matching if it is connected. Our result also partially resolves the problem posed by Sumner and Wojcicka in [7] in which they asked whether every k- γ -critical graph of even order contains a perfect matching for $k \ge 4$.

2. Preliminaries

In this section, we first cite some results which will be used to prove our theorems. For a pair of non-adjacent vertices u and v in G, we denote a minimum dominating set in G + uv by D_{uv} for short. Note that the minimum dominating set in G + uv is not unique.

Lemma 1 [3]. Let u and v be a pair of non-adjacent vertices in a $k-\gamma$ -critical graph G. Then

- (1) $|D_{uv}| = k 1$ and $|D_{uv} \cap \{u, v\}| = 1$;
- (2) If $D_{uv} \cap \{u, v\} = \{u\}$, then $D_{uv} \cap N_G[v] = \emptyset$.

Theorem 2 [6]. A graph G is 2- γ -critical if and only if $\overline{G} = \bigcup_{i=1}^{n} K_{1,s_i}$, where $n \ge 1$, $s_i \ge 1$.

Theorem 3 [5]. If a is a cut vertex of a $k-\gamma$ -critical graph G, then G - a has exactly two components.

Theorem 4 [5]. Let *G* be a k- γ -critical graph with a cut vertex *a* and C_1 and C_2 be the components of *G* – *a*. Further let $A = G[V(C_1) \cup \{a\}]$ and $B = G[V(C_2) \cup \{a\}]$. Then $\gamma(A) + \gamma(B) = k$.

A vertex v of a graph G is said to be critical if $\gamma(G - v) < \gamma(G)$ and it is stable if $\gamma(G - v) = \gamma(G)$.

Theorem 5 [5]. Let G be a $k-\gamma$ -critical graph. Then

- (1) Every vertex of G is either critical or stable.
- (2) If a is a cut vertex, then a is stable.
- (3) If C is the set of all stable vertices of G, then G[C] is complete.

Theorem 6 (Tutte). A connected graph of even order has a perfect matching if and only if G does not contain a subset $S \subset V(G)$ such that G - S has at least |S| + 2 odd components.

3. k- γ -critical connected graphs with a nontrivial cut edge

Throughout this section, we suppose *G* is a k- γ -critical connected graph with a nontrivial cut edge e = ab, where $k \ge 2$. We will give a characterization of such graphs.

Since e = ab is a nontrivial cut edge, there are $c \in N(a) \setminus \{b\}$ and $d \in N(b) \setminus \{a\}$. Let A and B be the components of G - e with $a \in V(A)$ and $b \in V(B)$, respectively. Then $c \in V(A)$ and $d \in V(B)$ (see Fig. 1). We have the following results.

Theorem 7.

(1) If $\gamma(A) = 1$, then $A = K_2$.

(2) If $\gamma(A) = 2$, then A - a is $2 - \gamma$ -critical. Furthermore, $\overline{A - a} = \bigcup K_2$.

Proof. Since *ab* is a cut edge, we have that *a*, *b* are stable vertices of *G* and *v* is critical for each $v \in V(G) \setminus \{a, b\}$ by Theorem 5.

Claim 1. $\gamma(G) = \gamma(A) + \gamma(B)$, $\gamma(A) = \gamma(A-a) = \gamma(A+b)$ and $\gamma(B) = \gamma(B-b) = \gamma(B+a)$.

Proof of Claim 1. Let D_A and D_B be the minimum dominating set of A and B, respectively. Then $D_A \cup D_B$ is a dominating set of G. So we have $\gamma(A) + \gamma(B) \ge \gamma(G)$. \Box

Now we consider the minimum dominating set D_{ad} in G + ad. By Lemma 1, $D_{ad} \cup \{a, d\}$ is a minimum dominating set of G. Also $(D_{ad} \cup \{a, d\}) \cap A \succ A$ and $(D_{ad} \cup \{a, d\}) \cap B \succ B$. So we have $\gamma(A) + \gamma(B) \leq \gamma(G)$. Thus $\gamma(G) = \gamma(A) + \gamma(B)$.

Download English Version:

https://daneshyari.com/en/article/8901233

Download Persian Version:

https://daneshyari.com/article/8901233

Daneshyari.com