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In this paper, two new algorithms for computing the Weighted Moore–Penrose inverse 

A † 
M,N 

of a general matrix A for weights M and N which are based on elementary row and 

column operations on two appropriate block partitioned matrices are introduced and in- 

vestigated. The computational complexity of the introduced two algorithms is analyzed in 

detail. These two algorithms proposed in this paper are always faster than those in Sheng 

and Chen (2013) and Ji (2014), respectively, by comparing their computational complexi- 

ties. In the end, an example is presented to demonstrate the two new algorithms. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Throughout the paper we shall use the standard notations of [1–3] . The symbol C m ×n 
r denotes the set of all m × n com- 

plex matrices with rank r , C n stands for the n dimensional complex space. I n represents an identity matrix of order n . For 

A ∈ C m × n , the symbols R (A ) , N (A ) , || A || F , A 

∗, A 

−1 and r ( A ) denote its range, null space, the Frobenious norm, the conjugate 

transpose, regular inverse and rank, respectively. R (A ) ⊥ and N (A ) ⊥ are orthogonal complement space of R (A ) and N (A ) , 

respectively. 

For any A ∈ C m × n , we recall that the weighted Moore–Penrose inverse of A , denoted by A 

† 
M,N 

, is the unique solutions 

X ∈ C n × m satisfying the following four matrix equations 

AX A = A (1) 

X AX = X (2) 

(M AX ) ∗ = M AX (3 M ) 

(N X A ) ∗ = N X A (4 N ) 

where M and N are Hermitian positive definite matrices of orders m and n respectively. If M = I m 

and N = I n , then the 

weighted Moore–Penrose inverse A 

† 
M,N 

reduces to the Moore–Penrose (abbreviated M–P) inverse A 

† . The matrix A 

# = N 

−1 A 

∗M

is called the weighted conjugate transpose matrix of A , it is easy to check R (A 

# ) = R (N 

−1 A 

∗M) = N 

−1 R (A 

∗) and N (A 

# ) = 

N (N 

−1 A 

∗M) = M 

−1 N (A 

∗) . 
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Table 1 

Error and execution time results for computing A † 
M,N 

with η = 10 −2 . 

Method Time (s) r 1 r 2 r 3 r 4 

Algorithm 2.2 0.668300 1.3129e −11 3.4777e −12 7.1661e −07 4.6343e −07 

Algorithm 3.1 0.609692 1.4660e −11 3.4204e −12 5.1026e −07 3.6697e −11 

Algorithm 2.3 0.578097 2.4588e −10 1.1145e −09 1.1145e −08 8.7446e −07 

Algorithm 3.2 0.401415 1.0820e −10 1.5932e −12 6.0671e −09 5.8628e −08 

Table 2 

Error and execution time results for computing A † 
M,N 

with η = 10 4 . 

Method Time (s) r 1 r 2 r 3 r 4 

Algorithm 2.2 0.755466 1.1092e −11 3.0973e −14 1.4398e −08 2.5990e −06 

Algorithm 3.1 0.558564 6.8732e −12 3.0930e −14 1.1076e −08 4.3657e −09 

Algorithm 2.3 0.750131 1.7855e −08 3.1442e −09 1.8343e −07 2.9696e −06 

Algorithm 3.2 0.4 4 4912 3.1664e −09 1.4137e −11 1.0243e −07 7.4231e −07 

Let A ∈ C m × n be of rank r , T be a subspace of C n of dimension s ≤ r and S be a subspace of C m of dimension m − s such 

that AT � S = C m . Then there exists a unique matrix X such that X AX = X with R (X ) = T and N (X ) = S. This X is called the 

outer inverse or {2} inverse of A with prescribed range T and null space S and denoted by A 

(2) 
T,S 

. 

It is well known that A 

† 
M,N 

is a special {2} inverse X of A with R (X ) = R (A 

# ) = N 

−1 R (A 

∗) and N (X ) = N (A 

# ) = 

M 

−1 N (A 

∗) , this means that A 

† 
M,N 

= A 

(2) 

R (A # ) , N (A # ) 
= A 

(2) 

N −1 R (A ∗) ,M 

−1 N (A ∗) 
. 

Weighted M–P inverse arises in matrix computation, image reconstruction, large-scale systems and statistics. In the latest 

fifty years, there have been many famous specialists and scholars, who investigated the weighted M–P inverse A 

† 
M,N 

. Its 

representation and perturbation theories were introduced in [4–14] . 

One handy method of computing the inverse of a nonsingular matrix A is the Gauss–Jordan elimination procedure by 

executing elementary row operations on the pair ( A I ) to transform it into ( I A 

−1 ) . Moreover Gauss–Jordan elimination 

can be used to determine whether or not a matrix is nonsingular. However, one can not directly use this method to compute 

weighted M–P inverse A 

† 
M,N 

on a square singular matrix A . 

In 1987, Anstreicher and Rothblum [15] used Gauss–Jordan elimination to compute the index, generalized null spaces, 

and Drazin inverse. Recently, the authors [13,16–18] used two different Gauss–Jordan elimination methods to compute the 

A † and A 

(2) 
T,S 

, respectively. More recently, these algorithms were further improved by Ji [14,19–21] , Stanimirovic and Petkovic 

[22] . 

In [13,16] , the author, Chen and Gong proposed an algorithm for computing the outer inverse A 

(2) 
T,S 

and M–P inverse 

A † starts from elementary row operations on the pair ( GA I ) . Then, Ji [19] , Stanimirovic and Petkovic [22] proposed an 

alternative explicit expressions for A † and A 

(2) 
T,S 

, respectively. These methods begin with the elementary row operations on 

the pair ( G I ) and do not need to compute A 

∗A or GA . Following the line [19] , Ji [14] develop an algorithm for A 

† 
M,N 

free of computing N 

−1 . More recently the author and Chen [17] start with the elementary row and column operations on 

the partitioned matrix 

(
GAG G 

G 0 

)
for computing A 

(2) 
T,S 

, then in [18] the author improved the algorithm [17] to compute 

M–P inverse A † . In [20,21] Ji proposed a new method for computing the outer inverse A 

(2) 
T,S 

and M–P inverse A † by applying 

elementary row operations on a blocked matrices. 

As a special {2} inverse, the algorithms of [13,17,21,22] can be used to compute A 

† 
M,N 

with G = A 

# . If we use these methods 

to compute A 

† 
M,N 

, it is not only increase the computational cost to compute the A 

# = N 

−1 A 

∗M, but also it worsens the 

condition number. The goal of this paper is to develop algorithms for A 

† 
M,N 

free of computing A 

# = N 

−1 A 

∗M. 

In this paper, inspired by the ideas of [14,17,21] , we will propose two alternative methods of elementary row and col- 

umn operations for weighted M–P inverse A 

† 
M,N 

by applying row and column operations on the matrices 

(
A 

∗ N 

M 

−1 0 

)
and (

0 A 

∗M 

N 

−1 A 

∗ 0 

)
, respectively. Our approach is like the one in [17,21] by working a bordered matrix and the A 

† 
M,N 

is easily 

read off from the computed result. But the complexities of my two approaches are all less than that in [17,21] . 

The paper is organized as follows. The ideas of computational A 

(2) 
T,S 

in [17,21] are repeated in the next section. In Section 3 , 

we derive two novel explicit expressions for A 

† 
M,N 

and propose two Gauss–Jordan-like elimination procedure for A 

† 
M,N 

based 

on the formula. In Section 4 , their computational complexities are studied. In Section 5 , an illustrative example is presented 

to explain the corresponding improvements of the algorithm. 
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