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a b s t r a c t 

The common issue of surrogate models is to make good use of sampling data. In theory, 

the higher the fidelity of sampling data provided, the more accurate the approximation 

model built. However, in practical engineering problems, high-fidelity data may be less 

available, and such data may also be computationally expensive. On the contrary, we of- 

ten obtain low-fidelity data under certain simplifications. Although low-fidelity data is less 

accurate, such data still contains much information about the real system. So, combining 

both high and low multi-fidelity data in the construction of a surrogate model may lead 

to better representation of the physical phenomena. Co-Kriging is a method based on a 

two-level multi-fidelity data. In this work, a Co-Kriging method which expands the usual 

two-level to multi-level multi-fidelity is proposed to improve the approximation accuracy. 

In order to generate the different fidelity data, the POD model reduction is used with vary- 

ing number of the basis vectors. Three numerical examples are tested to illustrate not only 

the feasibility and effectiveness of the proposed method but also the better accuracy when 

compared with Kriging and classical Co-Kriging. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Many engineering optimization problems may be presented by partial differential equations. With advances in science, 

the major issue is managing computational effort (CPU time, memory, and interfacing) due to the cost of the high fidelity 

numerical simulations (finite elements, finite volumes, etc.) involved. In order to decrease the overall cost, reduced-order 

models are an economical and efficient option. 

A wide range of approximation techniques [1,2] consists in replacing a complicated numerical model by a lower order 

meta-model, usually based on polynomial response surface methodology (RSM), kriging, least squares regression and moving 

least squares [3] . Surrogate functions and reduced order meta-models have also been used in the field of control systems 

to reduce the order of the overall transfer function [1] . Another popular physics-based meta-modeling technique [4] allows 
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for benefiting in more extent from the full-field information provided by the numerical models [5] . It has been success- 

fully applied to a number of areas such as flow modeling [6,7] , optimal flow control [8] , aerodynamics design optimization 

[9,10] or structural mechanics [11,12] . These approximated models have been constructed based on the accurate high-fidelity 

data samples only. 

Kennedy proposed Co-Kriging method [13] considering not only high-fidelity data but also low-fidelity data. Similar to 

Kriging method [14] , it is an interpolation technique based on statistical theory, and consists of a parametric linear regres- 

sion model and a non-parametric stochastic process. Surrogate modeling based on Co-Kriging has received much attention 

during past decade. Forrester et al. [15] arranged its detailed description and analysis including the code resources of both 

Kriging and Co-Kriging models. The main theory is based on the Markov property. That means each level of fidelity only 

considered the influence of the nearest level information. The design space should satisfy the subset relationship and the 

smallest subset in the high-fidelity design space. Then, an efficient approach for sampling update for Co-Kriging has pro- 

posed by Elsayed [16] and successfully applied in the optimization of the cyclone separator geometry. Furthermore, a re- 

cursive Co-Kriging model is provided by Gratiet [17] and Gratiet and Garnier [18] to reduce the complexity of the model 

by building independent Kriging. In 2017, Parussini et al. [19] extended the recursive Co-Kriging to vector-valued fields and 

various types of covariances. Recently, laser beam welding process parameter optimization approach was discussed by Zhou 

et al. [20] with support vector regression constructing with two-level fidelity data: low fidelity computer simulations and 

high fidelity physical experiments. Wu and Murray [21] used Co-Kriging method to estimate population density in urban 

areas. In 2011, Co-Kriging of additive log-ratios was implemented to determined global grades of iron, silica and so on by 

Boezio et al. [22] . Han et al. [23] proposed a new Co-Kriging method for variable-fidelity surrogate modeling of aerody- 

namic data. Moreover, recent application of recursive Co-Kriging model was discussed by Singh et al. [24] with the scheme 

being demonstrated using triple-fidelity data obtained from physical experiments, CFD simulations and analytical models, 

respectively. 

In this paper, we extend the usual two-level multi-fidelity model to a multi-level to improve the approximation accuracy. 

The other contribution of this work is to propose the strategy for constructing the multi-level multi-fidelity data based on 

POD models. Proper orthogonal decomposition (POD) (also known as Karhunen–Loeve expansions in signal analysis and pat- 

tern recognition [25] , or the Principal Component Analysis in statistics [26] , or the method of empirical orthogonal functions 

in geophysical fluid dynamics [27,28] ) is a procedure for extracting a basis for model decomposition from an ensemble of 

snapshots. Based on the process constructed by POD [8] , one can vary the basis size to obtain different fidelity snapshots 

used in Co-Kriging. 

The paper is organized as follows: in Section 2, we present the simple procedure for the construction of general Co- 

Kriging. A new Co-Kriging model is described in details based on multiple levels of fidelity in Section 3 . The verification of 

the feasibility and effectiveness of proposed method is discussed in Section 4 by means of three numerical experiments. The 

paper ends with conclusions and future goals. 

2. General two-level multi-fidelity Co-Kriging 

Co-Kriging is considered as a natural extension to the popular method of Kriging, but correlates multiple sets of data, 

and thus usually leads to a complex notation. To simplify the model, many researchers limit the data sets to two. With two 

levels [15] , Co-Kriging approximates the high-fidelity model y e (x ) using the formula 

y e (x ) = ρy c (x ) + y d (x ) (2.1) 

where y c (x ) denotes a Kriging model of a low-fidelity function and y d (x ) the difference between the low-fidelity 

function and a high-fidelity function. Assume two sets of data(high-fidelity and low-fidelity)be given. The high-fidelity 

model has n e samples ( X 

T 
e , y 

T 
e ) = ((x (1) 

e , y e (x (1) 
e )) , . . . , x (n e ) 

e , y e (x (n e ) 
e ))) , and low-fidelity model has n c samples ( X 

T 
c , y 

T 
c ) = 

((x (1) 
c , y c (x (1) 

c )) , . . . , (x (n c ) 
c , y c (x (n c ) 

c ))) . In order to evaluate the unknown value y e at point x (n e +1) , first we augment the ob- 

served data with the predicted value 

˜ X = 

{
X 

T 
c X 

T 
e x (n e +1) 

}T 
, ˜ y = 

{
y T c y T e y e 

(
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)}
, (2.2) 

Here each component of ˜ y is a normally distributed random variable with the same mean μ and variance σ 2 and y = 

{ y T c y T e } . In order to estimate y e (x (n e +1) ) , we maximize the likelihood estimate function and get the following formula: 

−1 
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or expressed as 
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where ˜ C is the correlation matrix given by 
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